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Abstract

Economists have been attempting to take on the optimal management of groundwa-
ter for many decades, initially through static models, and since the 1970’s through
a dynamic framework. Since then, several attempts have been made to test dy-
namic models through laboratory experiments. Yet formulating and testing these
models raises several challenges that we attempt to tackle in this study by testing
a very simple dynamic groundwater extraction model in a laboratory experiment.
We propose a full characterization of the theoretical solutions, taking into account
economic constraints. In the experiment we mimic continuous time by allowing
subjects to make their extraction decisions whenever they wish, with an actual-
ization and updating the data (resource and payoffs) every second. The infinite
horizon is simulated through the computation of payoffs, as if time were endless.
To get around the weaknesses of the widely used Mean Squared Deviation (MSD)
statistic and classify individual behavior as myopic, feedback or optimal, we com-
bine the MSD with Ordinary Least Squares (OLS) regressions and time series
treatments. Results show that a significant percentage of agents are able to adopt
an optimal extraction path, that few agents should be considered truly myopic,
and that using the MSD alone to classify agents would be misleading for about
half of the study participants.
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ferential Games; Experimental Economics; Applied Econometrics.
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1 Introduction

Water is an essential resource for the survival of all living species. For his daily needs,
man uses not only surface water, but also groundwater, which represents 98% of the
planet’s unfrozen fresh water reserves (UNESCO). Over the last 50 years groundwater
use has increased, especially in the agricultural sector. Moreover, this resource faces
new threats as pesticides used by the agricultural sector pollute groundwaters. Climate
change is also having a negative effect, as it leads to reduced rainfall, which notably
forces farmers to switch to groundwater to irrigate their crops, leading to the depletion
of several aquifers. The WorldBank estimates that groundwater is being depleted faster
than it is being replenished, so that in 2025, almost 1.8 billion people could experience
an absolute water shortage. The overexploitation of groundwater could be explained
by the phenomenon Hardin (1968) called the tragedy of the commons. Given their
non-excludability and rivalrous nature, groundwaters are common resources which are
overexploited without regulation. In the light of the urgency of adopting measures for
the efficient management of common-pool resources (CPRs), it is essential to have acute
knowledge of the different decision-making processes of individuals in order to better
anticipate the effects of any measures intended to reduce groundwater exploitation.

To understand individual behaviors, economists have formulated mathematical mod-
els to represent the problem faced by the extracting agent. Until the 1970’s, these models
were static (Gordon, 1954), but the need to follow both the evolution in behavior and the
studied resource over time, as well as to study the interactions among agents, has led to
the use of a dynamic framework. Moreover, lab experiments on common resources have
evolved from a static to a dynamic framework in order to make the experiments more
realistic (Gisser & Sanchez, 1980; Feinerman & Knapp, 1983; Clark, 1990; Dasgupta &
Heal, 1979). The baseline model has been altered in many ways, both theoretically and
experimentally, to study the role of hydrological characteristics of groundwater (Gisser &
Sanchez, 1980; Feinerman & Knapp, 1983; Rubio & Casino, 2003; Suter et al., 2012), to
account for the presence of externalities (Herr et al., 1997; Gardner et al., 1997), to study
the role of information (Hey et al., 2009), and even to study the choice between linear
and non linear strategies (Tsutsui & Mino, 1990; Rowat, 2007; Colombo & Labrecciosa,
2015; Tasneem et al., 2017), to cite but a few examples. While the empirical testing
of these models is essential to understanding agents’ behavior, experimental procedures
and empirical strategies implemented vary from one study to another, and some of the
strategies used can reveal inappropriate.

In this paper, we use a simple dynamic groundwater extraction model and charac-
terize the behavior of laboratory participants. We compute the myopic, feedback and
social optimum solutions and voluntarily stay with a very simple model and classic pre-
dictions in order to propose methodological contributions that can be used by a wide
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range of studies in the field. Our study possesses four main features. First, we propose
a full characterization of the cost function, paying particular attention to the positivity
of marginal costs, which leads us to use a "LambertW" specification in the derivation of
the feedback solution. Next, in the experiment we mimic continuous time by allowing
subjects to make their extraction decisions whenever they wish, with an actualization
of the data (resource and payoffs) every second. Third, the infinite horizon is simulated
through the computation of payoff as if time were endless. Finally, in order to classify
the individual as exhibiting myopic, feedback or optimal behavior and to get around the
weaknesses of the widely used Mean Squared Deviation (MSD) statistic, we combine
it with Ordinary Least Squares (OLS) regressions and time series treatments. The full
characterization of the cost function and the combination of MSD and OLS are con-
tributions of the paper. The representation of continuous time and infinite payoff are
features borrowed from recent papers in the literature. These four features form what we
argue to be good practices when studying dynamic games of common-pool resources in
a laboratory experiment. To our knowledge, we are the first to conduct an experimental
study on differential games comparing the behavior of experimental subjects according
to theoretical predictions, as well as combining a single agent and a multiple agent treat-
ment in the same experiment. Results show that a significant percentage of agents are
able to adopt the optimal extraction path, that few agents should be considered truly
myopic, and that using the MSD alone to classify agents would be misleading for about
half of the study participants.

The remainder of the paper is organized in the following manner: Section 2 gives
an overview of the literature related to the research question; Section 3 presents the
theoretical predictions, both for a single agent and multiple agents; Section 4 describes
the experiment; Section 5 shows the methodology followed to analyze the experimental
data; Section 6 gives the results, and Section 7 provides a discussion and concluding
remarks.

2 The Literature

The management of the commons has been the concern of many researchers for many
decades, but studies were initially conducted through static models, which do not take
into account the effect of resource evolution on individual behaviors. It was only in
the 1970′s that the transition to a dynamic framework took place. The interest of this
framework lies in the existence of a set of state variables which are able, not only to
describe the evolution of the system at any moment, but also to describe interactions
occurring between individuals over time (Basar & Olsder, 1999; Dockner et al., 2000;
Haurie & Zaccour, 2005; Engwerda, 2005; Van Long, 2010). Furthermore, several recent
laboratory experiments rely on dynamic models for robust results. This paper is related
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to several strands of the literature which are discussed in this section. First, we review
the initial experimental tests in discrete time. Second, we look at the first articles
implementing continuous time in the lab. Next, we look at two recent articles that use
differential games and take up the challenge of continuous time in the lab. Finally, we
explain how our study relates to this literature.

Using a discrete time model, Hey et al. (2009) studied with a one-player finite horizon
model, the role of information (the number of fish units and their growth function) in the
management of fisheries. They found that subjects under-harvested the resource when
no information was given to them. Using a finite horizon n players model, Herr et al.
(1997)’s work on dynamic and static externalities resulting from the use of groundwater
revealed that most of the time subjects adopted more myopic behavior in the dynamic
setting than in the static setting. Another study on externalities is that of Gardner et
al. (1997). The authors tried to analyze the impact of three property rights regimes
(no restriction, entry restriction and individual quota, respectively) in the mitigation
of strategic, stock and congestion externalities resulting from the use of groundwater
in the western United States. Using a finite horizon n players model, they found an
improvement in efficiency, both in the entry restriction and the individual quota. Based
on the same type of experiment, Suter et al. (2012) analyzed both a one-player (optimal
control) and n-player (game) behaviors. In an infinite horizon framework, they studied
the effect of taking into account hydrological characteristics of groundwater on subjects’
pumping rates. Their main result is that, contrary to a simple groundwater model,
considering a spatially explicit model can reduce both myopic behavior and pumping
rates.

The first papers that dealt with continuous time models in the lab were applied to
extensive form games à la Simon & Stinchcombe (1989).1 The authors were interested
in comparing continuous and discrete time in both public goods and minimum effort
games, as well as in testing the importance of communication in these games (Oprea
et al., 2014; Leng et al., 2018). They were also interested in testing the relationship
between the time horizon and agent cooperation (Bigoni et al., 2015). Their results
show that continuous time without communication does not perform better than discrete
time and that a deterministic time horizon promotes cooperation. Although these are
important explorations of continuous time in the lab, they do not take into account the
evolution of a state variable. Other articles which have tried to bring more realism to
the implementation of continuous time in the lab without using a model are Janssen
et al. (2010) and Cerutti (2017). These authors have introduced spatial and temporal
dimensions in the study of renewable resources and done it in real time to simulate the

1Simon & Stinchcombe (1989) defined in a time interval [0,1] a finite set of agents and imposed some
limitations in the actions players could change, which allowed them to play games in continuous time,
in the limit as the interval approached zero. In this paragraph dedicated to quasi-continuous time, all
expressions that referred to «continuous time» actually referred to «quasi-continuous time».
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real-life conditions of ecological systems.
Two studies have been conducted in continuous time, using differential games and

taking up the challenge of infinite horizon. Using a linear quadratic model and focusing
on feedback behavior, Tasneem et al. (2017) consider a simultaneous exploitation of
a common renewable fishery by two identical actors in order to observe whether they
adopt a linear or a nonlinear strategy. The results suggest that most players employ
nonlinear reasoning. Moreover, the authors find that different initial extraction rates
do not affect the subjects’ behavior, whereas different initial stock do, causing over-
extraction when the initial stock is low. Tasneem et al. (2019) use the same model as
Tasneem et al. (2017), in order to determine whether a single player is able to sustainably
and efficiently manage a renewable fishery. Their results suggest suboptimal behavior
due to initial overextraction of the resource because of the tradeoff between instantaneous
payoff and the future sum of payoffs. However, contrary to Tasneem et al. (2017), the
authors find that a linear model explains the observed extraction rates better than a
non linear model. Although these are the first papers exploring differential games in a
dynamic framework, they focus on the study of behavior inside a specific state-dependent
strategy, also called the Markovian strategy.2

Our study builds on previous literature, such as Rubio & Casino (2003) for the theo-
retical model and Tasneem et al. (2017, 2019) for the experiment, but to our knowledge
we are the first to compare the behavior of experimental subjects according to theoreti-
cal predictions. Following Tasneem et al. (2017, 2019), we have combined in a dynamic
framework theoretical models and laboratory experiments in continuous time and infinite
horizon, despite the challenges that their implementation in the laboratory pose. In fact,
it is important to focus on continuous time and infinite horizon to replicate the evolution
of real-world resources. Indeed, groundwaters are dynamic resources which continuously
renew, nevertheless with a potential risk of exhaustion (Koundouri, 2004). The advan-
tage of the continuous time dynamic framework is that it allows for the possibility of
experimental subjects making decisions at any time and seeing the consequences of these
decisions in real time. Second, in line with Suter et al. (2012), in the same experiment we
combined optimal control (single agent) and game (multiple agents) treatments. How-
ever, we did this in a within subject design, whereas the authors used a between subject
design. The participants of our experiment played the single-agent treatment first and
the two-players game second. We proceeded this way for two reasons. Firstly, we be-
lieve that before we can successfully understand the behavior of a group of individuals
who interact with each other, it is essential to understand how they behave individu-
ally. Secondly, given the complexity of our theoretical model, the dynamic environment
involving both continuous time and the infinite horizon perceived through the computa-

2See Tasneem & Benchekroun (2020) for “A review of experiments on dynamic games in environ-
mental and resource economic”.

5



tion of payoffs and the piecewise cost function, it was relevant to run the study first with
a single agent to ensure that he fully understand all the underlying mechanisms before
introducing a second agent into the resource extraction game. Finally, we carried out
a simple analysis without institutional arrangements such as communication or punish-
ment, so that our study could serve as a benchmark for future, more complex studies on
the optimal management of renewable resources.

3 The Model

We consider a simple continuous time linear quadratic model in which farmers harvest
a renewable resource that can be assimilated to a groundwater.

The model is based on that of Rubio & Casino (2003), however, with an extension on
the cost function. Water is the only input in the production process, and in the interest
of simplification, the aquifer is assumed to have parallel sides and a flat bottom.3 At a
given time t, the extraction done by farmers gives them a benefit B(w) depending only
on the extraction rate w, according to the following equation4:

B(w) = aw − b

2w
2, (1)

with a and b positive parameters. Figure 10 on the left in Appendix D shows a
farmer’s benefit function. However, farmers also incur harvesting costs, so that the total
harvesting cost C(H,w), positively depends on the extraction rate w and negatively
depends on the level of the groundwater H, as shown by equation (2). In other words,
H is the elevation of the water table above the bottom of the aquifer, so that c0 is the
maximum average cost. Thus:

C(H,w) =
marginal cost (c(H))︷ ︸︸ ︷

max(0, c0 − c1H)w, (2)

where c0 and c1 are positive parameters. We also pay attention to the positivity of the
marginal or unitary cost c(H), while theoretical models usually avoid this constraint
and suppose that parameters are such that marginal cost is positive at the optimum and
equilibria. This gives us a piecewise marginal cost function (3), allowing us to study all
the different types of regimes, in addition to the steady state regime.

c(H) =


(c0 − c1H) if 0 ≤ H <

c0

c1
0 if H ≥ c0

c1

(3)

3We use a simple "Bathtub" model to illustrate the groundwater extraction.
4We omit the subindex t when not necessary.
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Instantaneous payoff is the difference between benefit and total costs. Figure 10 on
the right in Appendix D shows the marginal cost function.

3.1 The Case of a Single Agent: Optimal Control

In the single agent problem, the evolution of the water table is the following:

Ḣ = R− αw, H(0) = H0, H0 given,

where R is the natural recharge, namely the rain that we assume to be constant and
α the constant return flow coefficient. The farmer’s problem is to choose at time t, for all
t ∈ [0,∞], the extraction rate w(t). For experimental purpose and in order to study up
to what point subjects take into account the evolution of the resource, we consider two
extreme types of behavior: a forward-looking farmer who maximizes the discounted sum
of his instantaneous payoffs over time, taking into account the evolution of the dynamics;
and a myopic farmer who maximizes his instantaneous payoffs.5

3.1.1 The Social Optimum Solution

A farmer adopts a social optimum behavior when his extraction decision allows him to
maximize his discounted net payoff in order to keep the resource at an efficient level. His
maximization problem, where r is the discount factor is then:

max
w(t)

∫ ∞
0

e−rt

[
aw(t)− b

2w(t)2 −max(0, c0 − c1H(t))w(t)
]
dt (4)

s.t 

Ḣ(t) = R− αw(t)
H(0) = H0 ≥ 0, H0 given

H(t) ≥ 0
w(t) ≥ 0

Condition 1 : We suppose that:

R

α
<
a

b
,

Rαc1 +Rbr − aαr + αc0r

αc1r
>
c0

c1

This condition is given to ensure that the steady state of the optimal solution is:

H∞ = c0

c1

This will allow us to better differentiate the two types of behavior. In fact, as we will
see, when the resource is less than c0

c1
and not so small, the optimal level of the water

5We give the steps to follow for the proof of the different solutions in the Appendix A and B.
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table increases to c0

c1
, while the myopic solution causes the water table to go down to its

steady state, which is smaller than c0

c1
.

Theorem 1 : Under condition 1 the steady state of the optimal solution is:

H∞op = c0

c1
, w∞op = R

α

The optimal groundwater path has two regimes: it increases to this steady state when
H0 <

c0

c1
(decreases when H0 >

c0

c1
) till a certain time T where H(t) = c0

c1
for all t ≥ T .

The optimal extraction rate follows the same trajectory towards its steady state. It can
be preceded by a regime with null extraction.

3.1.2 The Constrained Myopic Solution

In theory, the myopic solution is given by a situation where the farmer is only interested
in the maximization of his current payoff. The constrained myopic problem faced by the
farmer is:

max
w(t)

[
aw(t)− b

2w(t)2 −max(0, c0 − c1H)w(t)
]

(5)

for each level of the water table. This maximization problem provides a feedback
representation6 of the solution w(H), constrained to:



Ḣ(t) = R− αw(H(t))
H(0) = H0 ≥ 0, H0 given

H(t) ≥ 0
w(t) ≥ 0

Condition 2 : We suppose that

a > c0,
R

α
− a− c0

b
> 0

This condition is to ensure the positivity of the steady state and the extraction of
the constrained myopic solution.

Theorem 2 : Under condition 2, the steady state of the constrained myopic problem is:

H∞my = b

c1

(
R

α
− a− c0

b

)
, w∞my = R

α

6The feedback representation is obtained when the solution is written according to the state variable,
instead of according to time.
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When H0 > H∞my, the constrained myopic path decreases to the steady state. More-
over, the constrained myopic extraction is given by:

wmy(H) =



a

b
if H >

c0

c1

a− c0 + c1H

b
if 0 ≤ H ≤ c0

c1

Note that condition 1 implies that H∞my < H∞op . In our simulation the difference
H∞op −H∞my will be large enough to differentiate the two behaviors.

3.2 The Case of Multiple Agents: Game

We consider now that two identical and symmetrical farmers exploit the groundwater.
Payoff and cost are the same as those of the single farmer, but now the evolution of the
water table is the following:

Ḣ = R− α(w1 + w2), H(0) = H0, H0 given.

As before, the farmer’s problem is to choose at time t, for all t ∈ [0,∞], the extraction
rate wi(t). We considered two types of individual behavior: feedback and myopic. In
the feedback equilibrium, a forward-looking farmer maximizes the discounted sum of his
instantaneous payoffs over time, taking into account the dynamics of the groundwater,
while the myopic farmer maximizes his instantaneous payoffs. For sake of comparison
we consider the joint maximization problem, also known as the cooperative solution (or
the social optimum solution). We did this because we wanted to know if some kind of
"tacit" cooperation could emerge without negotiation, because we thought that having
first played the single agent dynamic problem, agents who behaved optimally would
behave the same way in the game, because they already had information about optimal
behavior.7

3.2.1 The Social Optimum Solution

Farmers adopt a cooperative behavior when extraction decisions maximize the joint
discounted net payoff in order to keep the resource at an efficient level. The maximization
problem, where r is the discount factor is then:

V (H0) = max
w1(t),w2(t)

∫ ∞
0

e−rt
2∑

i=1

[
awi(t)−

b

2wi(t)2 −max(0, c0 − c1H(t))wi(t)
]
dt (6)

7We give the step to follow for the proof of the different solutions in Appendix C.
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s.t 

Ḣ(t) = R− α(w1(t) + w2(t))
H(0) = H0 ≥ 0, H0 given

H(t) ≥ 0
wi(t) ≥ 0

Condition 3 : We suppose that:

R

α
<
a

b
,

2Rαc1 +Rbr − 2aαr + 2αc0r

2αc1r
>
c0

c1

As in the single agent case, this condition is designed to ensure that the steady state
of the optimal solution is:

H∞ = c0

c1

Theorem 3 : Under condition 3 the steady state of the optimal solution is:

H∞op = c0

c1
, w∞i, op = R

2α
The optimal resource path has two regimes: it increases to this steady state when

H0 <
c0

c1
(decreases when H0 >

c0

c1
) till a certain time T where H(t) = c0

c1
for all t ≥ T .

The optimal extraction rate follows the same trajectory towards its steady state. It can
be preceded by a regime with null extraction.

The proof of this theorem follows the same structure as that of the single agent.

3.2.2 The Nash Feedback Solution

Now we consider a scenario in which farmers adopt non-cooperative behavior, maximizing
their own net payoffs and taking into account the evolution of the groundwater. For each
farmer, the maximization problem, where r is the discount factor is then:

max
wi(t)

∫ ∞
0

e−rt

[
awi(t)−

b

2wi(t)2 −max(0, c0 − c1H(t))wi(t)
]
dt (7)

s.t 

Ḣ(t) = R− α(w1(t) + w2(t))
H(0) = H0 ≥ 0, H0 given

H(t) ≥ 0
wi(t) ≥ 0

Condition 4 : We suppose that:

Rb+ 2α2A2 − 2α(a− c0) > 0, Rb+ 2α2A2 − 2α(a− c0)
2α(c1 − αA3)

<
c0

c1
, a− c0 − αA2 > 0,
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Where,
A2 = (a− c0)(−c1 + 2αA3)−RbA3

−rb− 2c1α + 3A3α2 ,

and A3 is the solution of:

−3α2

2b A
2
3 + rb+ 4c1α

2b A3 −
c2

1
2b = 0,

with −c1 + αA3 < 0

Conditions Rb+ 2α2A2 − 2α(a− c0) > 0 and Rb+ 2α2A2 − 2α(a− c0)
2α(c1 − αA3)

<
c0

c1
ensure

that the steady state of the feedback path is positive and in the regime where cost is
positive. Condition a− c0 − αA2 > 0 ensures that extraction is always positive.

Theorem 4 : Under condition 4 the steady state of the feedback equilibrium is:

H∞f = Rb+ 2α2A2 − 2α(a− c0)
2α(c1 − αA3)

, w∞i, f = R

2α

Groundwater increases to this steady state when H0 < H∞f (decreases when H0 >

H∞f ). The extraction rate follows the same trajectory towards its steady state.

3.2.3 The Constrained Myopic Solution

As in the single agent model, the myopic solution is given by a situation where each
farmer is only interested in the maximization of his current payoff. The constrained
myopic problem faced by the farmer is:

max
wi(t)

[
awi(t)−

b

2wi(t)2 −max(0, c0 − c1H)wi(t)
]

(8)

for each level of the water table. This maximization problem provides a feedback
representation of the solution wi(H), constrained to the evolution of the water table
exploited by the two symmetrical farmers:



Ḣ(t) = R− 2αw(H(t))
H(0) = H0 ≥ 0, H0 given

H(t) ≥ 0
wi(t) ≥ 0

Condition 5 : We suppose that:

a > c0,
R

2α −
a− c0

b
> 0.

This condition is to ensure the positivity of the steady state and the extraction of the
constrained myopic solution.
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Theorem 5 : Under condition 5 the steady state of the constrained myopic problem is:

H∞my = b

c1

(
R

2α −
a− c0

b

)
, w∞i, my = R

α

When H0 > H∞my the constrained myopic path decreases to the steady state. Moreover,
the constrained myopic extraction is given by:

wi, my(H) =



a

b
H >

c0

c1

a− c0 + c1H

b
0 ≤ H ≤ c0

c1

By condition 3, we know that H∞f <
c0

c1
= H∞op , and by condition 4, we also know

that H∞f > H∞my, so we can conclude that:

H∞my < H∞f < H∞op (9)

4 The Experiment

4.1 Experimental Design

The experiment took place at the Experimental Economics Laboratory of Montpellier
(LEEM), during 6 sessions in the second half of 2018. A total of 70 students from the
University of Montpellier, randomly drawn from a pool of volunteers, participated in the
experiment.8

This non-contextualized experiment was divided into two parts: in the first part
subjects played alone, as described in subsection 3.1, and the second part was played
by groups of two, as described in subsection 3.2.9 In each part, subjects played two
five-minute training phases and one additional five-minute effective phase, that counted
for the experiment payoff.10 Upon arriving in the lab, subjects read the instructions of
Part 1.11 These instructions specified that there were two independent paid parts, and
that subjects would receive the instructions from Part 2 when Part 1 was completed.
Subjects accumulated units that were converted into cash payment with the conversion

8Given the complexity of the experiment, we restricted the pool of volunteers to students from disci-
plines commonly employing complex calculations (physics, mathematics, economics, biology, medicine
and computer science). This can be easily done with ORSEE (Greiner, 2015), the software used by the
LEEM to manage the subject pool. The software we used for the experiment was LE2M.

9We decided not to contextualize the experiment 1) to avoid framing effects and 2) to have a more
general experimental framework which could serve as a benchmark to different types of renewable
common-pool resources.

10The experiment payoff was composed of the payoffs in Part 1 and Part 2, which were paid in cash
at the end of the experiment. Subjects had information about the composition of their payment.

11Available upon request.
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rate of 10 units (ECU) equal to 0.5 euro.12 Each experimental session lasted around 90
minutes.13

4.1.1 Part 1 - The Case of a Single Agent: Optimal Control

The instructions explained the evolution of the resource, the decision to be taken (a level
of extraction) and its consequences on the level of the resource, the cost of extraction and
the payoff. After time for a silent individual reading was given, an experimenter read the
instructions aloud. Subjects then answered a computerized comprehension questionnaire
to ensure that they understood the dynamics of the resource and the calculation of
payoffs. Subjects were also allowed to ask questions if any clarification was needed. The
experiment began with two identical and successive training phases, followed by a third
phase for pay. Each phase lasted 5 minutes (300 seconds). The purpose of the training
phases was to familiarize subjects with the graphical interface, the continuous evolution
of variables (resource, extraction and payoff) and the graphs shown on the screen.

Before starting the countdown, subjects had to choose an initial level of extraction
between 0 and 2.8, by moving a cursor on a graduated slider, which allowed values
with two decimals. We chose these values in order to have a positive benefit, given the
quadratic nature of our benefit function. Figure 10 in Appendix D shows a concave
benefit curve, where the maximum benefit is reached for an extraction rate of 1.4. The
figure also shows the unitary cost function, which decreases as the level of the groundwa-
ter increases and becomes equal to zero as soon as the level of the groundwater reaches
the steady state level 20.

Once the initial extraction was chosen, a new screen appeared and subjects were
able to see the level of the resource and their payoff, which included the cumulative and
continuation payoffs, all updated every second.14 They also had the possibility to modify
their extraction level at any moment by simply moving the cursor. The extraction level
was updated as soon as the cursor was released and the new value was then used for
the calculations (resource and payoff). Subjects had real-time information in graphical
and textual form, which was updated every second. At the graphical level, a curve at
the top left of the screen showed the subject’s extraction level; a curve at the bottom
left displayed the dynamics of the resource and a curve at the top right showed the
subject’s payoff for the part. At the bottom right of the screen the same information
was displayed in text form. The start and finish of each phase were also synchronized,
i.e., all the subjects in the room started and finished at the same time. A screenshot of
the user’s interface is given in Figure 11 in Appendix D.

12ECU means Experimental Currency Unit.
13The infinite horizon in our experiment was not implemented through the time of the experiment

but rather through payoffs. For more details about infinite horizon, refer to subsection 4.2, paragraph
"Infinite horizon".

14More details on the computation of the payoff is given at subsection 4.2, "Infinite horizon".
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4.1.2 Part 2 - The Case of Multiple Agents: Game

In this part, new instructions were given to subjects, specifying that the environment
remained the same as in Part 1, except that instead of extracting the resource individually
they would now be doing so in pairs. This part also included two identical and successive
training phases, followed by a third phase for pay. It was also common knowledge that
the pairs were randomly reformed after each phase. The screen, given by Figure 12 in
Appendix D was identical to that of Part 1, except that in the top left graphic two
additional curves showed the extraction of the other player and the total extraction of
the pair.

4.2 Continuous Time and Infinite Horizon

Continuous time

There are two main ways of implementing continuous time in the lab: via extensive
form games and via differential games. Given the difficulty of having pure continuous
time using differential games, most of the continuous time lab experimentations used
extensive form games. In fact, continuous time extensive form games are defined by
Simon & Stinchcombe (1989) as, “A discrete time model with an infinitely fine grid”.
Therefore, articles using the method of Simon & Stinchcombe are referred to as quasi-
continuous time articles (Friedman & Oprea, 2012; Oprea et al., 2014; Bigoni et al., 2015;
Leng et al., 2018).15

In this article, we use differential games, which are dynamic games in continuous time.
The implementation in the laboratory is very challenging because two important aspects
should be taken into account. The first is that subjects were allowed to change their
extraction level whenever they wished instead of per period. Secondly, their decisions
applied continuously. More precisely, subjects moved a graduated slider to make their
choice whenever they wanted, and once the slider was released, the level of extraction
was sent to the server, which set the new extraction level to the chosen value. The time
step in the experiment was set to one second, meaning that all information was updated
every second.

Infinite horizon

We found two ways of implementing infinite horizon in lab experimentation. The first
was to impose an exogenous probability of termination of the decision making round, or
in other words, a random end, so that subjects do not know exactly when the experi-

15For Simon & Stinchcombe (1989), "When restricted to an arbitrary, increasingly fine sequence of
discrete-time grids, any profile of strategies drawn from this class generates a convergent sequence of
outcomes, whose limit is independent of the sequence of grids." The authors consider this limit to be a
class of continuous time strategy.
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mentation will end (Suter et al., 2012). However, this technique implies a different end
for each player and is not necessarily interpreted as an infinite horizon but rather as an
unknown end. The second way is like Tasneem et al. (2017, 2019) to add a continuation
payoff, which computes the payoff subjects would have obtained if the experimentation
were pursued indefinitely, supposing that the last action remains constant.

We followed the same procedure as these authors, using the mechanism of "scrap
value", applied every second. The payoff in our experiment is then composed of two
elements: a cumulative payoff from the first instant to the current one, and a continuation
payoff from the current instant to infinity. To compute the later we supposed that the
player keeps his extraction level unchanged. More precisely, for a given time t, the
computer computes the cumulative payoff till t = p and adds a continuation payoff,
starting from t = p until infinity, by assuming that the player’s extraction remains at
the same level.

4.3 Experimental settings

Table 1 reports the parameters used in both the theoretical model and the experiment,
which have been determined by taking into account theoretical and experimental con-
straints. First, the speed of convergence to the steady state had to be reasonable, neither
too short – a few seconds – nor too long – several minutes. In fact, the steady state can
be interpreted as a static framework, which simplifies the experimentation and allows
subjects to stabilize their extraction rate and pay attention to the sustainability of the
resource. Given the infinite horizon, this required to set a small discount rate r.

Variable Description Value

a Extraction parameter 2.5
b Extraction parameter 1.8
c0 Maximum average cost 2
c1 Variable cost 0.1

c0 − c1H Marginal or unitary cost 2− 0.1H
r Discount rate 0.005
R Natural recharge (rain) 0.56
α Return flow coefficient 1
H0 Initial resource level 15

Table 1 – Parameters for the experiment

Second, as the steady state extraction rate is the same for all types of behavior, we
wanted to have a clear difference in the paths leading to the steady state groundwater
level of social optimum, feedback and constrained myopic behaviors. More precisely,
we chose these parameters to obtain a steady state of the social optimum leading to a
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high level of groundwater, while lowering the level of groundwater for the Nash feedback
and constrained myopic. Third, for simplification we set α, the return flow coefficient
equal to 1 and the natural recharge R a little smaller, to avoid floods and highlight the
renewable nature of the resource.16 Figures (1) and (2) below give the theoretical time
path for the different types of behavior, both for the optimal control and for the game,
according to the chosen parameters.

Finally, we established a rule for the possible situation where the extraction level
chosen by players exceeds the available resource. In that case, we decided to force the
extraction level to zero until either the quantity of the resource increases enough for this
extraction or until players change their decisions.

Figure 1 – Social optimum and myopic extraction and groundwater level for the optimal
control

16The return flow coefficient is the quantity of water returning to the groundwater after each extrac-
tion.
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Figure 2 – Social optimum, feedback and myopic extraction and groundwater level for
the game

4.4 Predictions

The experiment aims to determine which type of behavior is the most commonly ex-
hibited by subjects, given the environment (alone or in a group) in which they make
their extraction decisions. Considering the experimental setting, as well as learning and
mimicry effects that can occur, we formulate four main predictions.

Prediction 1: The externality implied by the mutliplicity of extractors increases the
number of myopic agents in the game.

Most of the literature on common pool resources favors the emergence of myopic
behavior when strategic interactions among players occur. Potential explanation is the
fact that they engage in a race for the resource in order to exploit it at a lower cost while
the resource level is still high (Herr et al., 1997; Leng et al., 2018; Tasneem et al., 2019).

Prediction 2: An agent who behaved optimally in the optimal control is more likely
to behave optimally in the game.

To formulate this prediction, we relied on the analytical capabilities of individuals.
We believe that having successfully understood the principle of the experiment by pre-
serving the resource and ensuring high payoffs, the optimal agent will be more inclined
to maintain the same tendency when playing in a group, by trying to anticipate the way
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to proceed in response to the behavior of the other player(s) in the group.

Prediction 3: When two agents who behaved optimally in the optimal control play
together, they have a greater chance of again adopting optimal behavior in the game.

This prediction supposes a learning effect, because subjects who have individually
understood the problem when playing alone, with only a cost externality (costs nega-
tively depend on the level of the resource), will be better able to manage the additional
strategic interaction. Indeed, they are more likely, at the steady state, to take half the
extraction they performed when they played alone, or to ensure that the sum of their
extractions is equivalent at the steady state to the extraction they performed when they
played alone, compared to an agent that was not able to determine the optimal extrac-
tion level when he played alone.

Prediction 4: When paired with agents that behaved optimally in the optimal con-
trol, other types of agents are more likely to behave optimally in the game.

The idea is that, by being confronted with individuals who optimally manage the
resource, other types of individuals may be positively influenced. Thus, by a mimicry
effect they will be more likely to follow the behavior of optimal agents.

5 Empirical Strategy

70 agents participated in the one player (optimal control) and the multiple players (game)
experiments. They took extraction decisions for 300 seconds in each part. Using the
extraction decisions data, we intend to determine whether these agents demonstrated
myopic or optimal behavior (or feedback behavior in the game). We start by examining
the behavior of agents in the optimal control experiment because we first want to identify
an agent’s type without strategic interactions.

To identify which theoretical extraction pattern an agent’s extraction comes closest
to, common practice in experimental economics is to compute the mean squared devia-
tions (MSD), e.g., Herr et al. (1997). The minimum MSD gives the agent’s type. The
MSDs are calculated for each individual such as:

MSDth
my =

∑T
t=1

(
w(t)− w(t)th

my

)2

T

MSDth
op =

∑T
t=1

(
w(t)− w(t)th

op

)2

T

(10)
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where w(t) is the extraction of the agent at time t, w(t)th
my is the constrained myopic

theoretical extraction at time t, and w(t)th
op is the optimal theoretical extraction at time t.

In this case, agents would be classified as myopic or optimal, depending on which MSD,
MSDth

my orMSDth
op is the smallest. Comparing extractions of the agent to the theoretical

constrained myopic and optimal extraction in this way is imperfect since an individual
can make mistakes and begin playing perfectly optimally after, say, 30 periods, while
this will not be captured correctly by the method.

For instance, if an agent A under-extracts for the first 30 seconds, the optimal extrac-
tion at time 31, given the observed groundwater level H (called conditional, w(31)c

op)
will be greater than the optimal extraction at time 31 if the agent behaved perfectly
optimally since time 0 (w(31)th

op). Thus, in order to correctly identify an agent’s behavior
type - myopic or optimal -, for the rest of the paper, we compare observed extraction
to conditional extractions. Conditional extractions are computed with respect to the
t − 1 groundwater level. The conditional groundwater level Hc is also computed, using
an approximation involving the observed t− 1 groundwater level in the experiment, the
natural recharge, and the conditional extraction. Thus, we are interested in the following
MSDs:

MSDc
my =

∑T
t=1

(
w(t)− w(t)c

my

)2

T

MSDc
op =

∑T
t=1

(
w(t)− w(t)c

op

)2

T
,

(11)

where w(t)c
my is the conditional constrained myopic extraction of the agent at each

second, and w(t)c
op is the conditional optimal extraction of the agent at each second.

Agents are classified as myopic or optimal depending on which MSD,MSDc
my orMSDc

op

is the smallest.
The discommoding feature of a classification of agents based on the MSD alone, is

that an agent will always be classified, even if he doesn’t follow the theoretical pattern
studied at all.17 To overcome this flaw, we add a second criteria based on regression
analysis. Supposing that for a given agent A, we have:

w(t)c
my < w(t)c

op, or

w(t)c
my > w(t)c

op,
(12)

then we run the following regression:
17To take a concrete example, instead of comparing the agent’s extraction w(t) to the conditional

constrained myopic and conditional optimal extraction, w(t)c
my and w(t)c

op, we could compare it to the
temperature in Moscow and Istanbul, and we would find that our agent’s extraction is closer to the
temperature in Moscow or in Istanbul, because one MSD will always be smaller than the other, even if
completely irrelevant.
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w(t) = β0 + β1w(t)c
my + εt, or

w(t) = β0 + β1w(t)c
op + εt.

(13)

We consider an agent to be significantly myopic (or optimal) if β1 is positive and
significantly different from 0. This allows us to categorize the agents as: myopic, optimal,
or undetermined.18 Regarding the econometric time series treatments, we implement
an augmented Dickey-Fuller test to detect the presence of unit roots in the series. In
case of non-stationarity of the variables, we run our regressions on differentiated series.
Serial correlation of the error terms is dealt with using Newey-West standard errors, and
sensitivity tests using 1, 5, and 10 lags are implemented.19 Finally, we follow exactly
the same strategy to analyze experimental data for the game, but this time for the three
instead of for the two predicted behaviors, namely: myopic, optimal, and feedback. An
example of application of the methodology is given in Appendix E.

6 Results

6.1 The Case of a Single Agent: Optimal Control

Classifying agents in the optimal control experiment using the MSD leads us to find 65
optimal agents and 5 myopic agents. Figure 3 presents the location of agents with respect
to the conditional optimalMSD (MSDc

op) and the conditional constrained myopicMSD

(MSDc
my). The y axis on the figure shows MSDc

op, while the x axis shows MSDc
my.

18An alternative is proposed by Suter et al. (2012), who run a similar regression (without the constant
term) and consider that an agent follows a given behavior if the coefficient is not significantly different
from 1. A natural way to do this is to implement a Wald test with:{

H0 : β1 = 1
HA : β1 6= 1, and W = (β̂1 − 1)2

var(β̂1)
→ F(1,300)

In this case, a very imprecisely estimated coefficient β1 (very large var(β̂1)) will lead us to reject HA

and classify the agent as myopic or optimal, while he follows neither an optimal or myopic path. This
is the reason why we propose the aforementioned alternative rule for classification.

19We present regression results using 5 lags. Results using 1 and 10 lags are available upon request.
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Figure 3 – MSD position of agents in the optimal control

Agents located above the bisector are considered as myopic (MSDc
op > MSDc

my) and
reversely. Thus, according to the MSD criteria, 65 agents should be classified as optimal
and 5 as myopic. As we explained in Section 5, this simple criteria is unsatisfactory,
because we want to know if agents are significantly optimal or myopic. Applying the
regression filter presented in the previous section leads us to find that 31 agents can
be classified as significantly optimal and the rest are undetermined, meaning that 39
undetermined agents would have been incorrectly classified without the regression filter
we propose. Figure 4 represents the 31 optimal agents. Compared to Figure 3, we can see
that significantly optimal agents tend to be those with a small MSDc

op and a relatively
large MSDc

my, which supports the accuracy of our empirical strategy.
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Figure 4 – MSD position of optimal agents in the optimal control

To summarize, almost half of the studied agents are able to optimally manage the
resource when there is no externality related to the extraction of additional agents. We
observe no myopic behavior that would have led to a depletion of the groundwater.

6.2 The Case of Multiple Agents: Game

In the game, as can be seen in Figure 5, agents are closer to one or the other conditional
extraction path (less agents high in the diagonal), i.e., they have either a relatively
small MSDc

op or a relatively small MSDc
my. The MSD classification indicates that we

are observing 49 optimal, 3 myopic and 18 feedback agents. However, applying the
regression filter leaves us with 26 optimal, 2 myopic, 4 feedback, and 38 undetermined
agents. Again, notice that 38 agents would have been incorrectly classified without the
regression filter we propose.
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Figure 5 – MSD position of agents in the game

According to prediction 1, the fact that agents must now coordinate to optimally
extract the groundwater should result in more myopic behavior. The presence of two
myopic agents is bad news for the commons, since it moves towards an extinction of the
resource and the tragedy of the commons. However, we do not observe the dramatic
surge in the number of myopic agents we might have expected, due to coordination
failures and the negative externality from the extraction of the other agent. A possible
explanation is the fact that agents had the chance to manage the resource alone before
playing the game, which allowed them to understand the optimal management of the
resource. Finally, notice that we still observe 26 agents behaving optimally in the game,
even in the presence of strategic interactions, which is good news for the sustainability
of the resource.

Figure 6 and 7 shows, in line with prediction 2, that the probability of being
classified as optimal in the game is higher when the agent was optimal in the optimal
control. Indeed, 61% of the agents classified as optimal in the game were classified
as optimal in the optimal control while only 18% of the undetermined agents in the
optimal control became optimal in the game.20 Moreover, Figure 6 shows, in line with

20Percentages are calculated using the information presented in Figure 6 and 7: 9+10
31 ∗ 100 = 61% ,

3+4
39 ∗ 100 = 18%.
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our prediction 3, that the type of pair that exhibits the highest share of optimal
behavior in the game is the optimal-optimal pair (65% of the 14 agents that were paired
with another optimal agent remained optimal in the game).

Figure 6 – The becoming of optimal agents in the game
21

Prediction 4 isn’t contradicted by our data, as we note that an undetermined agent
in the optimal control is more likely to become optimal in the game if he plays with an
optimal agent. As shown by Figure 7, 24% of the undetermined agents that were paired
with an optimal agent became optimal in the game, while only 14% of the undetermined
agents that were paired with another undetermined agent became optimal in the game.
Moreover, we note that other types of behavior, such as feedback and myopic, appear
only to a small extent in the case of a match between two undetermined agents. For
instance, the share of agents classified as myopic in the game when the two agents were
undetermined in the optimal control is 9%.
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Figure 7 – The becoming of undetermined agents in the game
22

6.3 Efficiency Analysis

To conclude our results analysis, it is interesting to look at the efficiency of the observed
extraction patterns. To do this, we follow a very common procedure in the literature
(Herr et al., 1997; Suter et al., 2012; Noussair et al., 2015; Tasneem et al., 2017), and
compute efficiency as the ratio of an agent’s observed payoff to the payoff that would
have been achieved by a perfectly optimal agent (215 ECU).23

In the control case, two main observations can be made by looking at Figure 8. First,
gains are heterogeneous. Second, the 31 optimal agents, in green, obtained higher payoffs
on average than undetermined agents, which again confirms the validity of the empirical
strategy we have proposed. Figure 8 displays a distribution of efficiency very similar to
Tasneem et al. (2019). Moreover, average efficiency in Tasneem et al. (2019) is 85% while
ours is 83%. We observe a smaller efficiency than in the optimal control of Suter et al.
(2012)’s experiment (83% versus 95%). A possible explanation is that they implemented
a discrete time experiment, which is easier to understand for the agents, while this paper
and that of Tasneem et al. implement an experiment mimicking continuous time.

23Remember that the total payoff is the sum of the discounted payoff at each second, plus the infinite
payoff that depends on the last extraction (see Section 4.2).
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Figure 8 – Efficiency of individual payoffs in the optimal control

Regarding the game, the maximum payoff for each group is 240 ECU. We compare
individual efficiency to 120 ECU, but it is possible to get "more than your own share".
Obviously, if one of the two members of the pair extracts a very small amount of ground-
water, the other member can obtain more than 50% of the total maximum benefits.24

Figure 9 shows, as expected, that optimal players get closer on average to their max-
imum payoffs.25 However, as expected, due to the introduction of strategic interaction
and the coordination problems that come along with it, the distribution of efficiency
is more heterogeneous than in the optimal control and lower on average, as also found
by Suter et al. (2012) (see standard deviations in the descriptive statistics provided in
Appendix F).

24Descriptive statistics on the efficiency ratio by behavior type are available in Appendix F.
25It could be interesting to look at other categories, but it would be difficult to draw conclusions

because of the small number of players classified as myopic and feedback.
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Figure 9 – Efficiency of individual payoffs in the game

7 Conclusion

In this paper, we start from a simple dynamic groundwater model to create a benchmark,
that theoretically, experimentally, and econometrically, will be able to meet several chal-
lenges faced by the existing literature. To our knowledge, this is the first experimental
study on differential games comparing the behavior of experimental subjects according
to theoretical predictions.

Our theoretical model emphasizes the importance of the cost function, providing
great details on the implications of the positivity of the marginal cost. This constraint
led us to use a "LambertW" specification in the feedback solution’s derivation. The model
also allows to deduce different resource dynamics, depending on the type of behavior:
social optimum, feedback and constrained myopic. The experiment takes the challenge
of implementing continuous time and infinite horizon by allowing participants to make
extraction decisions at any time they wish, and using payoffs to simulate infinite hori-
zon. All the data are updated every second and continuously shown to participants in
graphical and text form. To ensure that subjects understand the underlying mechanism
well, they play alone in a first part before playing in groups of two in a second part.

The empirical analysis of extraction behaviors combines Mean Squared deviation
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using conditional extractions and linear regressions to correctly classify participants’ be-
havior. We find that about half of the participants adopt an optimal extraction path
both in the optimal control and in the game. We also find two agents who display
a myopic-type behavior and four who exhibit a feedback-type behavior. However, the
rest of the participants follow behaviors that cannot be described by the three types
of behavior characterized in most of the theoretic literature. The combination of lin-
ear regressions in addition to the MSD traditionally computed helps in discriminating
between real optimal behavior and undetermined behavior. Avoiding misclassification
is important when trying to predict the impact of public intervention in the extraction
sector.

We hope our theoretical model, the solutions to experimental challenges and the
empirical strategy implemented can serve as a benchmark for more complex frameworks
in the study of dynamic common pool resources.
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Appendices

A The Single Agent Problem: Social Optimum So-
lution

To prove theorem 1, we first prove that under condition 1 it is not possible to have a
steady state other than c0

c1
. To do this, we separately consider the case where the optimal

solution lies in the regime with the level of the groundwater, H, smaller than c0

c1
and the

case with H greater than c0

c1
. The two regimes are differentiated by the cost function.

Proposition 1 : When H(t) < c0

c1
for all t, the steady state of the following problem

max
w

∫ ∞
0

e−rt

[
aw − b

2w
2 − (c0 − c1H)w

]
dt, (14)

s.t  Ḣ = R− αw,
H(0) = H0

is
H∞ = Rαc1 +Rbr − aαr + αc0r

αc1r
, w∞ = R

α

Proof 1 : The associated Hamiltonian is:

Hamiltonian = aw − b

2w
2 − (c0 − c1H)w + λ(R− αw),

where λ is the adjoint variable and the result is given by first order conditions at the
steady state.

Furthermore, this steady state cannot be a steady state of our problem because by
condition 1 it is greater than c0

c1
.

Proposition 2 : There is no steady state in the regime H(t) > c0

c1

Proof 2 : Suppose a solution with H(t) > c0

c1
for all t. The maximization problem is:

max
w

∫ ∞
0

e−rt

[
aw − b

2w
2
]
dt, (15)

s.t  Ḣ = R− αw,
H(0) = H0
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The associated Hamiltonian:

Hamiltonian = aw − b

2w
2 + λ(R− αw),

where λ is the adjoint variable, gives by first order conditions:

w(t) = a− αλ0e
rt

b

It is not possible to maintain the groundwater greater than c0

c1
if λ0 ≤ 0. Note that if

λ0 = 0, condition 1 gives Ḣ < 0. It is not possible to have w ≥ 0 if λ0 > 0.

These two propositions show that the steady state of the optimal problem is:

H∞op = c0

c1
, w∞op = R

α

Now to obtain the complete path we must solve first order conditions considering the
Hamiltonian of the problem and taking into account the constraints.

For H0 <
c0

c1
, the Lagrangian of the problem is:

L = aw − b

2w
2 − (c0 − c1H)w + λ(R− αw) + µ

(
c0

c1
−H

)
+ νw, (16)

where λ is the adjoint variable and µ and ν the Lagrange multipliers associated to
the constraints H ≤ c0

c1
and w ≥ 0, respectively.

For H0 >
c0

c1
, the Lagrangian of the problem is:

L = aw − b

2w
2 + λ(R− αw) + µ

(
H − c0

c1

)
(17)

The time of change of regime is obtained using the continuity of the adjoint variable,
the state variable and the control variable.
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B The Single Agent Problem: Constrained Myopic
Solution

Considering the different possibilities for H (H <>= c0

c1
), we obtain the constrained

myopic extraction. We can see that if H <
c0

c1
, the resolution of the differential equation

gives:

H(t) = H∞my + (H0 −H∞my)e
−
αc1

b
t
, (18)

with the steady state that is:

0 < H∞my = b

c1

(
R

α
− a− c0

b

)
<
c0

c1

by conditions 1 and 2. However, if H >
c0

c1
, as extraction is a

b
, condition 1 implies that

Ḣ < 0 and then, in a finite time, the trajectory enters the regime where H <
c0

c1
and the

reasoning for that regime applies.
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C The game

Proof of theorems 3 and 5 are similar to the case of a single agent. To prove theorem 4
we consider cases where H0 ≤

c0

c1
and H0 >

c0

c1
.

When H0 ≤
c0

c1
, condition 3 guarantees the positivity of the extraction path for all t

and that the Nash feedback trajectory remains in the region where H <
c0

c1
. The Nash

equilibrium can be found by solving the Hamilton–Jacobi–Bellman (HJB) equation:

rV i
R1(H) = maxwi

[
(awi −

b

2w
2
i − (c0 − c1H)wi − (V i

R1)′(H)(R− α(wi + wj(H))
]

By using the guessing method to guess a quadratic value function and a linear strategy,
one can easily find the Nash feedback equilibrium. Thus, proposing:

 V i
R1(H) = A1 + A2H + A3

2 H2

wj(H) = aiH + bi

One can find A1, A2, A3, ai, bi, where A3 is obtained by solving the following equation:

− 3α2

2b A
2
3 + rb+ 4c1α

2b A3 −
c2

1
2b = 0, (19)

with the condition −c1 + αA3 < 0, and we have:


a1 = c1 − αA3

b
,

b1 = a− c0 − αA2

b
,

A2 = (a− c0)(−c1 + 2αA3)−RbA3

−rb− 2c1α + 3A3α2 ,

A1 = 3α2A2
2 + 2Rb− 4α(a− c0)A2 + (a− c0)2

2br

The evolution of the water table for H0 is also given by:

H(t) = e

2α(−c1 + αA3) t
b

(
H0 −H∞f

)
+H∞f , H∞f = Rb+ 2α2A2 − 2α(a− c0)

2α(c1 − αA3)
.
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When H0 >
c0

c1
the problem is a bit different, because the following facts must be

taken into account: first, there is no stationary steady state in the regime where H >
c0

c1
.

As a consequence, the Nash feedback solution will decrease from this regime to the steady
state H∞f . Second, our problem is an autonomous problem, thus the solution in this case
is also the solution of an HJB equation of the form:

rV i
R2(H) = maxwi

[
(awi −

b

2w
2
i − (V i

R2)′(H)(R− α(wi + wj(H))
]

(20)

For the first point, the solution of this last HJB equation is constrained to the con-
dition:

V i
R2(c0

c1
) = V i

R1(c0

c1
) (21)

The first order condition for equation (20) gives:

wi(H) =
a− α(V i

R2)′(H)
b

(22)

Replacing (22) in equation (20) and taking into account that wj(H) = wi(H), we
obtain the following differential equation for V i

R2(H):

V i
R2(H) = C

2 [(V i
R2)′(H)]2 +B (V i

R2)′(H) + A, (23)

where, 

A = a2

2br ,

B = Rb− 2a
br

,

C = −α
2 + 4α
br

Differentiating (23) with respect to H, one must finally solve:

U(H) = B U ′(H) + C U(H)U ′(H), with U(H) = (V i
R2)′(H) (24)

The solution of equation (24) is given by:

U(H) = e
−
−H +BLambertW (x)− cte

B , x =
Ce

H

B + cte

B
B

, (25)

where LambertW is the LambertW function and the constant cte is found using (21).

To finally prove the link between the steady states of the 3 types of behavior studied
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in the game, as shown by equation (9), condition 4 gives:

H∞f = Rb+ 2α2A2 − 2α(a− c0)
2α(c1 − αA3)

= Rb− 2α(a− c0)
2αc1 − α2A3

+ 2α2A2

2αc1 − α2A3

=

Rb− 2α(a− c0)
2αc1

× 1

1− αA3

c1

+ 2α2A2

2α(c1 − αA3)

H∞f =

H∞my ×
1

1− αA3

c1

+ 2α2A2

2α(c1 − αA3)

Thanks to the condition −c1 +αA3 < 0, we can deduce that c1−αA3 > 0. Moreover,
we have A2 > A3, so that:

2α2A2

2α(c1 − αA3)
> 0, and

2α2A2

2α(c1 − αA3)
>

H∞my ×
1

1− αA3

c1


Thus, one can say that H∞f > H∞my, and we can finally conclude that, by conditions 3

and 4:

H∞my < H∞f < H∞op (26)
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D Figures in the experiment

Figure 10 – Farmer’s benefit and cost functions

Figure 11 – The single agent screenshot
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Figure 12 – The game screenshot
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E An example of how the empirical strategy works

The purpose of this appendix is to provide a precise example of an application of our
empirical strategy. We follow agent 58 and show all intermediate results.

Step 1: We compute the conditional MSDs in the optimal control. This gives us:
MSDc

my = 0.71818382

MSDc
op = 0.01072926

(27)

MSDc
op is the smallest. Extraction and conditional extraction paths of agent 58 are

then shown by Figure 13.

Figure 13 – Agent 58’s extraction path versus the conditional extraction path for the
optimal control

Visual inspection confirms that agent 58 is closer to the conditional optimal extraction
path than to the conditional myopic extraction path.

Step 2: Next, we regress agent 58’s extractions from time t = 0 to t = 300 over its
conditional optimal extraction path in the optimal control. Results are shown in Table
2.
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Table 2 – Agent 58’s extraction in the optimal control

(1)
w(t)

w(t)c
op 1.016∗∗∗

(8.91)

Constant -0.102
(-1.35)

Observations 301
Newey-West standard errors with 5-period lags.

t statistics in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The coefficient is positive (1.016) and significant at 0.1%. Therefore, we consider
agent 58 as being significantly optimal in the optimal control.

Step 3: We compute the conditional MSDs in the game. This gives us:
MSDc

my = 1.2330157

MSDc
fb = 0.2808204

MSDc
op = 0.01470975

(28)

MSDc
op is the smallest. Extraction and conditional extraction paths of agent 58 are

shown by Figure 14.
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Figure 14 – Agent 58’s extraction path versus conditional extraction path for the game

Visual inspection confirms that agent 58 is closer to the conditional optimal extraction
path than to any other path.

Step 4: Next, we regress agent 58’s extractions from time t = 0 to t = 300 over their
conditional optimal extraction path in the game. Results are shown in Table 3.

Table 3 – Agent 58’s extraction in the game

(1)
w(t)

w(t)c
op 0.760∗∗∗

(9.60)

Constant -0.0232
(-0.70)

Observations 301
Newey-west standard errors with 5-period lags.

t statistics in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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The coefficient is positive (0.760) and significant at 0.1%. Therefore, we consider
agent 58 as being significantly optimal in the game.
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F Efficiency

Tables 4 and 5 show descriptive statistics on the efficiency ratio.

Table 4 – Statistics on efficiency by agent’s type in the control

Payoff
Agent type Obs Mean Std. Dev. Min Max

Optimal 31 92.952 6.085 71.570 99.518
Undetermined 39 65.687 23.876 0 97.605

Total 70 77.762 22.718 0 99.518

Table 5 – Statistics on efficiency by agent type in the game

Payoff
Agent type Obs Mean Std. Dev. Min Max

Optimal 26 94.769 20.530 43.861 131.343
Feedback 4 52.336 26.871 31.455 89.185
Myopic 2 21.471 15.915 10.217 32.724
Undetermined 38 53.638 33.387 0 116.192

Total 70 67.922 35.300 0 131.343
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