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Abstract

During human evolution, individuals interacted in groups connected by limited mi-
gration and sometimes conflicts. If the spread of preferences, from one generation to
the next, depends on their material success, which preferences will prevail? Building
on population biology models of spatially structured populations, and assuming pref-
erences to be private information, we characterize which preferences, if any, cannot
be displaced, once established. We find that such uninvadable preferences represent
different motives when expressed in terms of fitness than when expressed in terms of
material payoffs. At the fitness level, individuals appear be driven by a mix of self-
interest and a Kantian motive, which involves evaluating one’s behavior in light of
what own fitness would be if others were to choose the same behavior. This Kantian
motive is borne out from kin selection (be it genetic or cultural). At the material
payoff level, individuals appear to be driven by these two motives, but also in part
by an other-regarding motive towards own group members. This motive represents
within-group spite or altruism. We show how population structure– group size, migra-
tion rates, probability of group conflicts, cultural loyalty towards parents– shape the
relative importance of these motives.
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1 Introduction

Preferences are fundamental to economics, and are usually treated as primitives.1 Behavioral
economics has proposed and studied a rich array of human behavioral motivations, notably
altruism (Becker, 1976), warm glow (Andreoni, 1990), a concern for fairness (Rabin, 1993),
reciprocal altruism (Levine, 1998), inequity aversion (Fehr and Schmidt, 1999), identity
concerns (Akerlof and Kranton, 2000), moral motivation (Brekke, Kverndokk, and Nyborg,
2003), self-image concerns (Bénabou and Tirole, 2006), and a concern for honesty (Alger and
Renault, 2006). However, little is yet known about their evolutionary background. What
preferences should individuals be expected to have if they are transmitted across generations,
and preferences that increase individual survival and reproduction spread at the expense
of other preferences? Answering this question is essential to understanding what are the
ultimate drivers of human behavior in social and economic interactions (e.g., Hirshleifer,
1977, Alexander, 1979, Bergstrom, 1996, Robson, 2001).

Suppose that an individual’s material returns or payoffs in interactions with others en-
hance the individual’s reproductive success (survival and number of offspring). It may then
appear plausible that biological evolution of genetically transmitted traits would favor in-
dividuals who strive to maximize their own material returns or payoffs. In formal models,
it has been established that the following three conditions are suffi cient for this conjecture
to be valid: (i) the population is very large and homogeneous (no subdivision by sex, age,
size, etc.) and reproduction is clonal, (ii) interacting individuals do not know each other’s
preferences or goal functions, and (iii) interactions are uniformly random in the population,
in the sense that each encounter is just as likely (see Ok and Vega-Redondo, 2001, Dekel,
Ely, and Yilankaya, 2007). Except for knife-edge cases, these conditions are also necessary.
However, they are rarely, if ever, met, even as approximations. Indeed, all natural popula-
tions (human or otherwise) are structured into groups, connected to each other by limited
migration and in some species there are also occasional group conflicts. Limited migration
causes limited genetic and/or cultural mixing in the population (Cavalli-Sforza and Bodmer,
1971, Hartl and Clark, 2007), and this in turn has profound consequences for the evolution
of traits.

Spatial population structure imposes constraints on the ways in which traits– including
strategies and preferences– can spread. For example, consider a genetically transmitted
trait and suppose that in an initially homogenous group (or location) suddenly a new trait

1Throughout this paper we use concepts and terminology that are standard in economics, and model
behavior as a choice of action (or stream of actions) from a set of feasible actions, where this choice is guided
by a striving to maximize some goal (utility) function. The utility function together with the information
and the constraints imposed by the environment are thus what biologists would call the proximate causes
driving behavior. Furthermore, by contrast to the evolutionary biology literature where the terms “altruism”
and “spite”are used to refer to the fitness consequences of a behavior on the actor and others, in economics
they are used to describe the proximate causes behind behaviors. Thus, in economics, an individual who
has a utility function which puts a positive weight on another individual’s material well-being is altruistic;
and an individual who has a utility function which puts a negative weight on another individual’s material
well-being is spiteful. For further discussion of the meaning of these terms in different academic disciplines,
we refer to West et al. (2007) and Bshary and Bergmüller (2008).
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appears in one individual. Since children acquire their traits from their parents, in the
second generation some interactions between carriers of the new trait may occur between
siblings and in the third among cousins. Hence, locally interacting individuals are more
likely to share the same new trait (through their common ancestor), even when rare in the
population at large, than are individuals sampled at random from the whole population. Such
assortative matching between interacting individuals tends to favor behavior that promotes
the survival and/or reproductive success of others in their group or location, since such
behavior is more likely to benefit individuals carrying the new trait than when matching is
uniformly random (Hamilton, 1964, 1971, Grafen, 1985, Frank, 1998, Rousset 2004). This is
the so-called mechanism of kin selection in evolutionary biology (Maynard-Smith 1964). In
this literature, assortative matching between pairs of individuals is usually quantified by the
coeffi cient of relatedness—the fraction of their genes inherited from a local common ancestor—
a quantity depending on features of the population structure, such as the migration rate and
local group size.

By the same token, however, individuals who share a local common ancestor are also more
likely to be competing for the same local resources than are individuals drawn at random
from the population at large. In the above-mentioned genetic inheritance example, siblings
are likely to compete for the same resources. Since interacting groups are finite, such local
competition tends to favor behavior that hinders the survival and/or reproductive success
of others in the group or location, since achieving an edge over neighbors then translates
into evolutionary success (Hamilton, 1971, Schaffer, 1988, Frank, 1998, Rousset 2004). As
assortative matching and local competition can, in general, not be separated, their joint
effects need to be taken into account in order to understand the evolutionary success of
traits under limited dispersal, a question that has received much attention in the evolutionary
biology literature (see e.g. Hamilton 1967 and Taylor 1992 for pioneering and paradigmatic
examples, and Frank 1998 and Rousset, 2004, for general theoretical treatments).

While clearly relevant for the understanding of the evolution of motivational factors in
social interactions, this literature is yet of limited direct value for economists, because in the
bulk of these analyses (a) the focus is on the evolution of strategies and not of preferences;
(b) predictions are derived at the level of basic fitness components, such as reproduction
and survival, and not at the level of the material payoffs generated by interactions; (c)
transmission is assumed to be genetic instead of cultural, although the latter is highly relevant
to the social and behavioral sciences, including economics.

Here we propose a framework more in line with those used by economists, and we focus
on preference evolution. Specifically, we model the following thought experiment that takes
place in a large population over an infinite sequence of discrete time periods. The population
is structured into a large number of groups of equal size. Within each group, individuals
engage in a strategic interaction in which all parties’strategy choices may affect the material
payoffs to all participants. The material payoffs so realized in turn determine the expected
fitness of each individual in the population, where an individual’s fitness is the number of
those individuals in the following time period who have acquired their trait from him or
her. If transmission is genetic, an individual’s fitness is the number of his surviving offspring
and the individual himself if he survives. If transmission is cultural, an individual’s fitness
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is the number of individuals in the next time period who acquire their trait by copying
this individual. Offspring may migrate to another group or stay in the natal group. Many
different transmission scenarios are covered by this setting. For instance, generations may or
may not be overlapping, groups may wage wars against each other, traits may be transmitted
culturally from parent to child or by imitation of materially successful individuals. In all
our scenarios, genetic and cultural, the population is initially homogenous; all individuals
are ex ante identical. Suddenly, a different, mutant trait, spontaneously appears in exactly
one individual. The original, resident, trait is uninvadable if there exists no mutant trait,
such that the initial mutant produces enough descendants for its trait to be maintained in
the population in the long run.

Within this setting we study preference evolution. The traits in question are utility
functions that guide the carriers’s choice of strategy in the group interaction. We evaluate
a utility function’s fitness consequences for its carriers in terms of the material payoffs that
result when groups play Bayesian Nash equilibria under incomplete information. We ask
if there exist utility functions that are uninvadable in the sense that any mutant utility
function does worse, in terms of material payoffs, than the resident function in all equilibria.
This analysis allows to establish a link between, on the one hand, the environment in which
a population evolves– represented by the material game, the population structure, and the
transmission scenario– and, on the other hand, preferences that motivate individuals in their
choice of strategy. The following three main results emerge from our analysis.

First, under general transmission scenarios, allowing for both genetic and cultural evo-
lution, when material payoffs have marginal effects on fitnesses, uninvadable preferences
generically involve a mix of self-interest, a Kantian moral concern, which involves evaluating
one’s behavior in light of what own material payoff would be if others were to choose the
same behavior, and, in addition, a concern for other group members’material payoffs. The
weight on the Kantian motive is proportional to the coeffi cient of relatedness. The weight on
other group members’material payoffs may be negative (spite) or positive (altruism), and it
depends on the coeffi cient of local competitiveness, which measures the fitness benefit that
an individual garners relative to his neighbors by diminishing or enhancing their material
payoffs.

Second, we provide suffi cient conditions for preferences of a particularly simple form,
namely, a convex combination of own material payoff and the material payoff that would
arise should all others choose the same behavior, to be uninvadable. Under these conditions,
the weight given to the second, Kantian, component is given by the coeffi cient of scaled
relatedness, a coeffi cient that combines the (standard) coeffi cient of relatedness with the
coeffi cient of local competitiveness. This weight allows to determine whether, on balance,
equilibrium behaviors are pro- or anti-social, in the sense that equilibrium material payoffs
are higher or lower than under selfishness. We show that, depending on the specifics of the
transmission process, this coeffi cient may be negative or positive, and we identify conditions
under which it exceeds the coeffi cient of relatedness. To illustrate these results, we investigate
a specific but canonical genetic scenario with overlapping generations, allowing for warfare
between groups, and a cultural transmission scenario. The latter turns out to lead to a
negative coeffi cient of scaled relatedness.
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Third, our model allows to establish a clear distinction between preferences at the fit-
ness level and preferences at the material payoff level. Specifically, we identify suffi cient
conditions for preferences of the same form as above, but whereby individuals trade off own
fitness against the fitness that would arise should all others choose the same behavior, to be
uninvadable, instead of trading off the material payoffs. By contrast to the preferences at
the material payoff level, however, the weight attached to the second, Kantian, component
concern at the fitness level is the usual coeffi cient of relatedness (which is always positive).
Hence, uninvadability may be consistent with a Kantian concern both at the fitness level
and at the material payoff level, but the former may be stronger or a weaker than the latter.

The most closely related literature is the following (see also Section 5 for a more detailed
discussion of the biology literature). First, in Lehmann, Alger, and Weibull (2015) we asked
under what conditions, if any, genetic trait evolution in a group structured population is
compatible with individual maximizing behavior. Specifically, we established conditions,
notably when traits have only marginal effects on fitness, under which evolving strategies
can be interpreted as chosen by rational individuals endowed with certain preferences. These
preferences correspond to the ones we here show to be uninvadable, as described above. The
value added of the present paper is that we here (a) analyze preference evolution rather than
strategy evolution, (b) derive novel results on the coeffi cients of local competitiveness and
of scaled relatedness, and (c) consider more general transmission scenarios.

Second, Akçay and van Cleve (2012), investigated the evolutionary stability of behavioral
response functions as heritable traits, where different behavioral response functions may
represent different other-regarding preferences. In addition to focusing on complete rather
than incomplete information, their model differs from ours in two broad respects. First, they
focused only on the effects of traits on reproduction (fecundity) under genetic transmission.
Second, they only considered necessary first-order condition for the evolutionary stability of
such traits. Their first-order condition expresses how many offspring (units of reproduction,
fecundity) an individual is willing to forgo, as expressed by the individual’s preference, in
order to increase the reproduction (number of offspring) of any other given group member.
They show how this trade-off depends on the coeffi cient of scaled relatedness under complete
information, thus generalizing previous first-order condition from preference evolution under
uniform random matching (Heifetz, Shannon and Spiegel, 2007a-b) to spatially structured
populations.

Finally, Alger and Weibull (2013, 2016) investigated the evolutionary stability of pref-
erences under incomplete information, in an abstract model of assortative matching which
did not explicitly account for the demographics and population dynamics.2 They found

2By contrast to the present model, assortativity was there modeled as an abstract function that maps
the distribution of traits in the population to probabilities governing the matching of interacting individuals.
This formalization of assortativity was pioneered in economics by Bergstrom (1995, 2003), who focused on
strategy evolution; see also Bowles and Gintis (1998), as well as Alger and Weibull (2010, 2012) for analyses
of preference evolution under complete information. This formalization of assortativity, which implicitly
assumes marginal effects of traits on fitness, goes back to Hamilton (1971) and Michod and Hamilton (1980)
discuss how different formalizations of assortativity are equivalent to each other. It should further be noted
that Rogers (1994) studied the evolution of time preference in an age-structured population; a setting that
allows for kin selection but not kin competition.
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that preferences expressing a certain combination of self-interest and a Kantian concern are
evolutionarily stable, and that preferences that are behaviorally distinct from these are evo-
lutionarily unstable. They also showed how the weight given to the Kantian concern depends
on the assortativity in group formation. While assortativity in those models is treated as an
abstract primitive, it here arises explicitly from the population structure; group size, rates of
survival, migration, and conflicts together determine the probability that rare mutants get
to interact with each other. The present model thus contributes to this strand of literature
by explicitly modeling the population structure and how it gives rise to assortativity. The
model makes it clear that relatedness– the probability that individuals who share a common
ancestor get to interact– must go hand in hand with local competitiveness, a force which
does not appear in Alger and Weibull (2013, 2016). We here also show how relatedness and
local competitiveness can be formally traced back to population structure.

In sum, the existing literature displays how some features of the population structure
and transmission process translate into features of uninvadable (or stable) “as if”preferences
(Lehmann, Alger, and Weibull, 2015) or preferences (Akçay and van Cleve, 2012, Alger and
Weibull, 2013, 2016). Compared with the earlier literature on preference evolution, our con-
tribution is thus to explicitly analyze the effects of spatial and socioeconomic group structure
and limited migration between groups upon behavior and preferences; and compared to the
earlier biology literature, our contribution is to deliver predictions on preference evolution
at the level of material payoffs under incomplete information and clarify the connections
between the coeffi cients of relatedness, scaled relatedness, and local competitiveness.

The paper is organized as follows. Section 2 describes the model and provides a char-
acterization of an uninvadable trait. Section 3 provides the main results. In Section 4 we
illustrate these results in several specific evolutionary scenarios. Section 5 describes the
related literatures, and Section 6 concludes. All the proofs are in the Appendix.

2 Model

2.1 Group structure, life-cycle, and fitness

In this section we present the building blocks of our analysis: the population structure, in-
dividuals’life-cycles, and demography. We consider a countably infinite population, divided
into infinitely many identical islands (groups, locations, or villages). All islands have the
same number n > 1 of adults at each point in time. From birth, each individual is endowed
with a heritable type or trait θ ∈ Θ, which is fixed throughout his or her life. Time is divided
into demographic time periods, each consisting of two phases. In the first phase, the adults
in each island engage in a social or economic interaction with each other, to be called the
material game, the same on all islands and at all times. This is a symmetric non-cooperative
normal-form game in which each player has the same set of strategies, X, where X is a non-
empty compact set in some normed vector space. The interaction results in material payoff
π (xi,x−i) ∈ R to each individual i = 1, ..., n in the island, where xi ∈ X is the strategy used
by the individual at hand and x−i ∈ Xn−1 is the vector of strategies used by the others on
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i’s island.3 The material payoff-function π : Xn → R is assumed to be aggregative in the
sense that the payoff π (xi,x−i) to any individual i is invariant under permutation of the
components of the vector x−i ∈ Xn−1.4 (This invariance property holds if, for example, all
that matters for i’s material payoff is the sum, product, maximum or minimum of all his
or her neighbors’strategies.) In the main analysis an individual’s trait is a utility function
which guides his or her choice of strategy, and the set of traits Θ is the set F of aggregative
functions u : Xn → R, but we will also examine the case where an individual’s trait is a
strategy to play in the material game, i.e., Θ = X.

In the second phase of each demographic time period, transmission events occur. These
events determine, for each individual, the probabilities that her trait will be transmitted
to one or more adults, in her island or in another island, in the next demographic time
period. An individual’s immediate descendants consist of her surviving offspring as well
as herself if she survives, where “offspring”may be biological or cultural, and traits are
transmitted faithfully to offspring (i.e., “asexual”transmission).5 The expected number of
immediate descendants will be called the individual’s fitness. This fitness is assumed to
be determined by (a) the individual’s own material payoff, (b) the material payoffs to the
other individuals in her island, and (c) on the average material payoff in the population at
large. This dependency is represented by a continuously differentiable function w : Rn+1→ R
that maps material payoff vectors (πi,π−i, π

∗) to the fitness w (πi,π−i, π
∗), of any individual

i whose material payoff is πi ∈ R when her island neighbors earn payoffs π−i ∈ Rn−1,
and π∗ ∈ R is the average material payoff in the population at large. We note that if
all individuals in the population achieve the same material payoff, they also obtain the
same individual fitness, and this must equal one, by virtue of the assumption that the total
population size is constant over time.

Our objective is to draw general conclusions under as weak assumptions as possible.
Concerning the nature of the transmission events, the only restriction we impose is that all
offspring migrate between groups with a exogenously fixed positive probability. Concerning
how fitness depends on material payoffs, the individual-fitness function w is assumed to be
invariant under permutation of the material payoffs to the individual’s island neighbors, and
to be strictly increasing in own material payoff, strictly decreasing in the average material
payoff in the population at large, and to be (weakly) less sensitive to other group members’

3Our assumption that there is but one strategy set and material payoff-function π in each demographic
time period and on each island may appear unduly restrictive. However, our approach allows for the possi-
bility that π represents many interactions that may arise simultaneously or randomly, and that may involve
any subset of the inhabitants in an island, granted all individuals are equally likely to be involved, that
each interaction is aggregative-symmetric, and that individuals have the perceptive and cognitive capacity
to know which interaction is at hand.

4By aggregative we mean that for any xi ∈ X and x−i ∈ Xn−1, and any bijection h : {2, 3, ..., n} →
{2, 3, ..., n}: π

(
xi, xh(2), xh(3), ..., xh(n)

)
= π (xi,x−i).

5This is a standard assumption in the literature on preference evolution in economics. For notable
exceptions in the literature on strategy evolution, see Waldman (1994) and Bergstrom (1995).
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material payoffs than to own material payoff.6 More precisely, the following assumption will
be maintained throughout:

[M] (i) ∂w (πi,π−i, π
∗) /∂πi > 0, (ii) ∂w (πi,π−i, π

∗) /∂πj ≤ ∂w (πi,π−i, π
∗) /∂πi for all

j 6= i, (iii) ∂w (πi,π−i, π
∗) /∂π∗ < 0.

Part of our analysis will be restricted to one-dimensional strategy sets and differentiable
payoff functions, a case that we will refer to as the strategy-differentiable setting. Formally:7

[D] (i) X = R, and (ii) π : Rn → R is continuously differentiable.

We will sometimes use the composite function w̃ = w ◦ π, which gives the fitness of any
individual i who plays strategy xi when the others on his or her island play x−i and strategy
x is played by all individuals on all other islands:

w̃ (xi,x−i, x) = w
(
π (xi,x−i) , (π (xj,x−j))j 6=i , π

∗ (x)
)
, (1)

We note that w̃ : Xn+1 → R is continuously differentiable in the strategy-differentiable
setting.

Part of our analysis will assume that material payoffs affect fitness by a scaling factor
δ ≥ 0, the intensity of selection. Specifically, for each x ∈ X and y ∈ Xn−1 let

π̄ (x,y) = δ · π (x,y) . (2)

[S] For any payoff vector (πi,π−i, π
∗) ∈ Rn+1, the individual fitness of individual i is

w (π̄i, π̄−i, π̄
∗).

In biology weak selection refers to situations in which the fitness effects of heritable traits
are small and can be represented in terms of their first-order effects (see, e.g., Nagylaki,
1992, Rousset, 2004). We here implement weak selection by assuming [S] and considering
the limit as δ tends towards 0.8

2.2 Uninvadable traits

What matters for the long-run evolutionary success of any heritable trait is whether individ-
uals with that trait on average have more descendants in future generations than individuals
with other traits. We ask whether a monomorphic population, i.e., a population in which all
individuals have the same trait, may be invaded by another trait that initially appears in a
single individual. Formally, consider any material game 〈n,X, π〉, any transmission scenario

6These properties are fully in line with the literature on preference evolution, in which the material payoff
is taken to represent fitness.

7The uni-dimensionality assumption is inessential. All analysis can be carried out in terms of gradients,
but this is avoided in order not to clog the notation.

8This formalization of weak selection corresponds to what Wild and Traulsen (2007) call w-weak selection.
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whereby traits are transmitted from one demographic time period to the next according to
some fitness function w : Rn+1→ R satisfying Assumption [M], any resident trait θ ∈ Θ, and
any trait τ ∈ Θ that initially appears in a single individual. The trait θ is uninvadable if
the random number of demographic time periods during which any given mutant trait τ 6= θ
remains in the population is finite with probability one. In other words, a trait is called
uninvadable if any other (mutant) trait that initially appears in a single individual, is bound
to disappear from the population.

To get a hold on what traits, if any, are uninvadable in this sense, we use the notion
of an individual’s lineage, defined as the collection of this individual’s all descendants: her
immediate descendants, defined as her offspring and also herself if she survives, the imme-
diate descendants of her immediate descendants, etc. ad infinitum. Suppose that initially
everybody in the population has trait θ, and that suddenly one individual on an island,
a mutant, switches to another trait, τ . Individuals from the initial’s mutants lineage may
colonize (via migration) new islands that are occupied by the resident trait, and may do
so as singletons or possibly along with other mutants. Irrespective of whether an island of
residents is colonized by a single or several mutants, the random time of “first extinction”
of the local lineage of mutants– defined as the collection of all descendants of mutants who
initially jointly colonized that island– is finite with probability one, since the migration rate
by assumption is positive and constant.9

It turns out that local lineage fitness of the mutant trait τ can be used to characterize
uninvadability. This is defined as the average fitness of a mutant’s local lineage members,
the average being taken over all demographic time periods until the first period in which the
local lineage is extinct and over all possible initial conditions of that local lineage (single or
multiple simultaneous mutants), under the following assumptions: (1) in any island with k
mutants, all the mutants achieve the same material payoff, and all the residents achieve the
same material payoff; (2) these material payoffs are the same in all islands with k mutants. In
general traits may be associated with multiple material payoffs and matching probabilities.
While we show how this is done below, for now we proceed under the hypothesis that all pairs
of traits uniquely determine material payoffs and matching probabilities for all individuals.

Formally, the local lineage fitness of a mutant trait τ in a population where the resident
trait is θ is defined as

W (τ, θ) =

n−1∑
k=0

pk (τ, θ) · w (π (τ |k) , 〈π (τ |k) , π (θ|k)〉 , π∗ (θ)) , (3)

where, for each k = 0, ..., n− 1, pk (τ, θ) is the probability for a uniformly drawn descendant
of the initial mutant that k = 0, 1, ..., n−1 of his neighbors are also descendants of the initial
mutant. Such identity-by-descent depends on demographic features (migration rate, group
size, fecundity, survival, etc.) In the fitness term, π (τ |k) denotes the material payoff to the
mutant at hand when there are k other mutants among his neighbors, 〈π (τ |k) , π (θ|k)〉 ∈

9Note that even if locally extinct, lineage members may still live on other islands, and some of them may
even move to the mutant’s native island. However, this last event has probability zero in the limit when the
number of islands is infinite.
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Rn−1 denotes the vector of material payoffs to the other n− 1 members of i’s island (among
whom k have the mutant trait τ and the others have the resident trait θ), and π∗ (θ) is
the material payoff earned by individuals in the rest of the population, where all have the
resident trait θ.10

With local lineage fitness so defined, uninvadability can be succinctly characterized as
follows (Lehmann et al. 2016):11 a trait θ ∈ Θ is uninvadable if and only if for every trait
τ ∈ Θ,

W (τ, θ) ≤ W (θ, θ) ∀τ ∈ Θ. (4)

This characterization compares the local lineage fitness of a single initial τ -mutant, W (τ, θ),
to the local lineage fitness, W (θ, θ), of any resident in this population. Equivalently, the
criterion can be written

θ ∈ arg max
τ∈Θ

W (τ, θ) . (5)

An uninvadable trait thus preempts entry into the population by earning the maximal ex-
pected fitness that members of the local lineage of any original mutant can obtain in a
population where the resident trait is θ. In other words, a trait is uninvadable if and only if
it is a best reply to itself in terms of local lineage fitness.

The usefulness of this observation is limited by the fact that the weights pk (τ, θ) used in
the definition of W may depend in a non-trivial way on the traits θ and τ . However, as the
analysis below shows, this diffi culty may be circumvented by focusing on (a) the differentiable
setting, and (b) when material payoffs have infinitesimal effects on fitness (weak selection).
In both cases we will rely on the fact that while it is in general impossible to calculate
analytically the distribution of matching probabilities, p (τ, θ) = (p0 (τ, θ) , ..., pn−1 (τ, θ)), it
is possible to calculate the coeffi cient of pairwise relatedness

r (τ, θ) =
n−1∑
k=0

k

n− 1
· pk (τ, θ) . (6)

This is a summary statistic of identity-by-descent, which for descendants of the initial mutant
measures the average share of their neighbors who are also descendants of the initial mutant.

2.2.1 Uninvadable strategies

Prior to applying our model to the case when the traits are utility functions, consider briefly
the case when the heritable traits are (pure or mixed) strategies in the material game, i.e.,
Θ = X. Then all payoffs and matching probabilities are uniquely determined, and a strategy
x ∈ X is uninvadable if and only if

W (y, x) ≤ 1 ∀y ∈ X. (7)

10Likewise, one can define W (θ, θ) as the local lineage fitness of any given individual with trait θ when
the resident trait is θ.

11In Lehmann, Alger, and Weibull (2015) we proved this result for scenarios where new islands can be
colonized only by singleton mutants. Lehmann et al. (2016, eqs. (14)-(16)) extended that result to allow for
scenarios in which multiple offspring from the same group can reproduce in the same non-natal island.

10



Let x̂(n−1) denote the (n− 1)-dimensional vector whose components all equal x̂, and r (x̂, x̂) ∈
[0, 1] the coeffi cient of pairwise relatedness in a monomorphic population where everybody
plays x̂. This relatedness is evaluated under what biologists refer to as neutral drift or the
neutral process, i.e., when every individual in the population face the same prospects of
reproduction and survival (the same distribution for the random number of descendants,
which obtains if the population is monomorphic), see, e.g., Crow and Kimura (1970) or
Rousset (2004). If Assumption [D] holds and x̂ ∈ X is uninvadable, then

∂W (y, x̂)

∂y

∣∣∣∣
y=x̂

= w̃1

(
x̂, x̂(n−1), x̂

)
+ r (x̂, x̂)

n∑
j=2

w̃j
(
x̂, x̂(n−1), x̂

)
= 0, (8)

where an index i on w̃ denotes the partial derivative with respect to the i-th argument.
For any setting where the coeffi cient of relatedness r (x̂, x̂) is strictly positive, it can be
interpreted as a marginal substitution rate, since it measures the number of units of own
fitness that any given individual is willing to forgo to increase the fitness of each neighbor by
one unit. Indeed, the first term and the second (the sum) in (8) must have opposite signs; an
uninvadable strategy inflicts a marginal fitness cost on the individual (the first term), which
equals the sum of the marginal fitness benefits conferred on others (the sum) weighted by the
coeffi cient of pairwise relatedness. Equation (8) is thus nothing but the necessary first-order
condition of Hamilton’s rule (Hamilton, 1964) for an (interior) strategy to be uninvadable
(see equation (3) in Taylor and Frank 1996, or equation (7.5) in Rousset 2004).12 Such
first-order conditions are standard in the biology literature, but for the sake of completeness
we provide a proof in the appendix. Note that, besides the recipient-centered interpretation
provided above, expression in (8) can also be given an actor-centered interpretation. In
this second interpretation, the sum is viewed as the individual’s own fitness, should all the
neighbors play the same strategy as the individual himself. Both interpretations are found
in the literature (see, e.g., Figure 7.1 in Rousset, 2004).

2.2.2 Uninvadable utility functions

Henceforth, we take the heritable traits to be utility functions, i.e., Θ = F . Individuals are
assumed to be fully rational, know the set of available strategies X, and strive to maximize
the mathematical expectation of their personal utility function. To define uninvadability of
utility functions, suppose that initially everybody in the population is endowed with the same
utility function f ∈ F , and that suddenly one individual, a mutant, is given another utility
function g ∈ F . We focus on the case where each individual’s utility function, or type, is his
or her private information. Then an individual’s behavior cannot be conditioned on the types
of those with whom (s)he has been matched. However, individual behavior may be adapted
to the population state at hand– that is, the current type distribution in the population. We

12First-order conditions like equation (8) apply more generally to traits if lineage fitness and individual
fitness are differentiable in trait values. The aforementioned evolutionary dynamics literature focuses on
the evolution of phenotypes– the composite of an organism’s characteristics– thus subsuming virtually any
heritable trait.
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evaluate utility functions in terms of their expected material payoff consequences for their
carriers in all (Bayesian) Nash equilibria under incomplete information.13

What matters for an individual’s choice of strategy is his or her probabilistic belief about
her matching profile, that is, her subjective probability distribution of the numbers of resi-
dents and mutants in her own island. Let q̃ = (q̃0, q̃1, ..., q̃n−1) be a resident’s probabilistic
belief, where q̃k is the (subjective) probability that there are (precisely) k mutants in any
given resident’s island. Likewise, let p̃ = (p̃0, p̃1, ..., p̃n−1) be a mutant’s probabilistic belief,
where p̃k is the (subjective) probability that there are (precisely) k other mutants in her
island. Let ỹ(j) denote the j-dimensional vector whose components all equal ỹ, and x̃(j)

the j-dimensional vector whose components all equal x̃ (for j = 1, ..., n − 1). Given a pair
of utility functions (f, g) ∈ F 2, a (type-homogenous Bayesian) Nash equilibrium under a
matching profile 〈q̃, p̃〉 is a pair of strategies, (x̃, ỹ), one for each preference type, such that
each strategy is a best reply for any player of that type, given the (subjective) matching
probabilities 〈q̃, p̃〉:14{

x̃ ∈ arg maxx∈X
∑n−1

k=0 q̃k · f
(
x, ỹ(k), x̃(n−k−1)

)
ỹ ∈ arg maxy∈X

∑n−1
k=0 p̃k · g

(
y, ỹ(k), x̃(n−k−1)

)
.

(9)

In particular, if q̃k = 0 for all k > 0, then the first equation in (9) defines symmetric Nash
equilibrium play among n individuals of the resident type f (and is hence independent of
the mutant type g), and can thus be written more concisely as

x̃ ∈ arg max
x∈X

f
(
x, x̃(n−1)

)
. (10)

A utility function will be called uninvadable if any other (mutant) utility function, which
initially appears in a single individual, is bound to disappear from the population. Our
definition uses Nash equilibrium as a testing ground. It requires that if the residents were
playing some Nash equilibrium among themselves (thus having mutually adjusted their in-
dividual behaviors to best replies, given their preferences), and if residents’and mutants’
probabilistic beliefs were correct, then there would not exist any mutant who could enter the
population and earn a higher expected material payoff than the residents by acting optimally
according to his or her own preferences.

Recall that the population is infinite while any mutant’s lineage population, before its
first local extinction, is finite. Hence, to determine the viability of mutant preferences it
is suffi cient to consider (type-homogeneous) Nash equilibria (x̃, ỹ) under matching profiles
〈q0,p〉, where q0 is the unit vector (1, 0, 0, ..., 0) and p is a possible vector of mutants’true
matching probabilities, p0, p1, etc. in the given transmission scenario, when the resident

13Alternatives to Nash equilibrium for evolutionary analyses have been considered, see e.g. Curry and
Roemer (2012) and Newton (2017).

14By Berge’s maximum theorem and Kakutani’s fixed-point theorem, there exists such a strategy pair if (i)
the strategy set X is non-empty, finite-dimensional, compact and convex, (ii) the function u is continuous,
(iii) the first maximand in (9) is quasi-concave in x ∈ X and the second maximand in (9) is quasi-concave
in y ∈ X. For generalizations to infinite-dimensional spaces, see e.g. Aliprantis and Border (2006).
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utility function is f ∈ F and the mutant utility function is g ∈ F . In general, any such
probability distribution p may depend on both the resident’s strategy x̃ and the mutant’s
strategy ỹ. However, if the p distribution depends on the mutant’s strategy, then the distri-
bution over group profiles faced by a mutant is determined by its own strategy choice (see
(9)). This precludes a meaningful representation of individuals as choosing their strategies,
since then the number of island neighbors using the same strategy as the mutant will de-
pend on what strategy the mutant chooses.15 However, as will be shown below, under either
assumption [D] or [S] (in addition to [M]), the true p distribution depends at most on the
residents’strategy x̃. We will then write p (x̃) for a mutant’s unique matching probability
vector when residents use strategy x̃.

In force of the fact that a strategy x̂ ∈ X is uninvadable if and only if W (y, x̂) ≤ 1
for all strategies y ∈ X, we formally define a utility function f ∈ F to be uninvadable if
W (ỹ, x̃) ≤ 1 for all utility functions g ∈ F and all x̃ ∈ X2 satisfying (10) and

ỹ ∈ arg max
y∈X

n−1∑
k=0

pk (x̃) · g
(
y, ỹ(k), x̃(n−k−1)

)
. (11)

Any utility function that is not uninvadable will be called invadable.

3 Results

We begin by considering necessary first-order conditions under assumptions [M] and [D],
then illustrate the results in a base-line evolutionary scenario, and finally consider weak
selection under assumptions [M] and [S].

3.1 The strategy-differentiable setting

For any given reference strategy x ∈ X, define the associated utility function ux : Xn → R
by

ux (xi,x−i) = [1− r (x, x)] · w̃ (xi,x−i, x) + r (x, x) · w̃
(
xi,x

(n−1)
−i , x

)
, (12)

where x
(n−1)
−i ∈ Xn−1 is the strategy vector whose all components all equal xi (that is, when

all neighbors use i’s strategy).16 An individual equipped with the goal function ux̂ evaluates
her strategy, xi, both in terms of how it affects her own fitness, given the neighbors’strategies
and the strategy played in the population at large, reflected in the first term, and how it
would affect her neighbors’fitnesses should they also play her strategy xi, reflected in the

15This ultimately ows to the fact that under the (biological or cultural) transmission process of traits, the
p̃ distribution is determined in the ancestral state of a group, and hence is not a choice variable of a current
group member.

16It is easily verified that ux̂ (xi,x−i) is invariant under permuation of the strategies in x−i. Hence,
ux̂ ∈ F .
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second term. The latter has a flavor of Kant’s (1785) categorical imperative. The weights
attached to these two fitness effects are 1− r (x, x) and r (x, x), respectively.

The following proposition identifies conditions under which the utility function ux is
uninvadable.

Proposition 1 Suppose that [D] holds and that there exists a unique strategy x̂ that satisfies
(8). If x̂ is uninvadable and also is the unique Nash equilibrium strategy in the game in which
all players have utility function ux̂, then ux̂ is uninvadable.

The proposition underlines the challenge of characterizing uninvadable preferences with-
out making additional assumptions, given our stringent definition of an uninvadable utility
function. Indeed, this definition in effect requires all the Nash equilibrium strategies among
residents, the set of strategies satisfying (10), to be uninvadable under strategy evolution.
But no utility function whereby its carrier attaches a uniquely defined weight to his neigh-
bor’s fitnesses could encompass the fact that in case of multiple uninvadable strategies the
coeffi cient of relatedness typically differs between them.

While Proposition 1 thus shows that the utility function ux is uninvadable in a restricted
set of cases, it establishes that, at least in such cases, preferences whereby individuals attach
a positive weight r (x̂, x̂) to the Kantian concern about fitness, where x̂ is a candidate unin-
vadable strategy, may be viable. Does this also mean that Kantian concerns at the level of
material payoffs may prevail? The next two propositions provide answers to this question.

For any given reference strategy x ∈ X, define the goal function vx ∈ F by

vx (xi,x−i) = [1− κ (x)] · π (xi,x−i) + κ (x) · π
(
xi,x

(n−1)
−i

)
(13)

where

κ (x) =
r (x, x)− λ (x)

[
1

n−1
+
(
n−2
n−1

)
r (x, x)

]
1− λ (x) r (x, x)

, (14)

is the coeffi cient of scaled relatedness, and λ (x) is the coeffi cient of local competitiveness, a
coeffi cient that measures the marginal effect of neighbors’material payoffs on own fitness,
relative to the marginal effect of own material payoffon own fitness, in a population in which
all individuals play x:

λ (x) = −
(∑

j 6=i

∂w (πi,π−i, π
∗)

∂πj

)
/

(
∂w (πi,π−i, π

∗)

∂πi

)
. (15)

A positive coeffi cient λ (x) can be interpreted as there being competition for local resources:
an increase in the material payoffs to neighbors then reduces an individual’s fitness. A
negative coeffi cient λ (x) means that there is a positive externality at the level of material
payoffs between neighbors: an increase in the material payoffs to neighbors then increases
an individual’s fitness. Like ux, the function vx can be interpreted as involving a Kantian
concern, but at the level of material payoffs and not at the level of fitnesses. Indeed, an
individual equipped with this utility function evaluates her strategy, xi, by pondering both
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how it affects her own material payoff, given the neighbors’strategies, reflected in the first
term, and how it would affect her neighbors’fitnesses should they also play her strategy xi,
reflected in the second term. The weight attached to the Kantian concern, however, differs
from that attached to the Kantian concern in ux, whenever r (x, x) 6= κ (x).

The following result obtains:

Lemma 1 If [D] holds and x̂ ∈ X is uninvadable, then

[1− κ (x̂)] · π1

(
x̂, x̂(n−1)

)
+ κ (x̂) ·

n∑
j=1

πj
(
x̂, x̂(n−1)

)
= 0. (16)

In words, any uninvadable strategy x̂ must meet the first-order condition for it to be a
candidate symmetric Nash equilibrium strategy of a game in which all players have utility
function vx̂. The following proposition identifies conditions under which the utility function
vx̂ is uninvadable:

Proposition 2 Suppose that [D] holds and that there exists a unique strategy x̂ ∈ X that
satisfies (16). If x̂ is uninvadable and also the unique Nash equilibrium strategy in the game
in which all players have utility function vx̂, then vx̂ is uninvadable.

Taken together, Propositions 1 and 2 imply that in a population in which all individuals
play the same unique uninvadable strategy x̂, these individuals may be perceived as having
a Kantian concern at the fitness level as well as at the material payoff level. Moreover, the
strength of the Kantian concern at the fitness level, measured by r (x̂, x̂), may differ from the
strength of the Kantian concern at the material payoff level, measured by κ (x̂). The next
proposition shows that κ (x̂) can be smaller of larger than r (x̂, x̂), and that it is suffi cient
to know whether neighbors exert positive or negative externalities on each other’s material
payoffs to know whether κ (x̂) or r (x̂, x̂) is largest. Finally, the proposition shows that κ (x̂)
may even be negative. Specifically:

Proposition 3 The weight κ (x̂) attached to the neighbors’material payoffs in the function
vx̂ lies in the interval [−1, 1]. Furthermore, κ (x̂) > r (x̂, x̂) if and only if λ (x̂) < 0. A
necessary and suffi cient condition for λ (x̂) < 0 is that ∂w (πi,π−i, π

∗) /∂πj, evaluated at x̂,
is strictly positive.

The coeffi cient κ (x̂) can be interpreted as a marginal substitution rate, since it gives
the number of units of own material payoff that any given individual is willing to forgo to
increase the material payoff of each neighbor by one unit. If there was no local competition,
i.e., if λ (x̂) = 0, then κ (x̂) would be equal to r (x̂, x̂), meaning that the individual would
be willing to forgo material payoff at a rate given by relatedness, r (x̂, x̂). This is intuitive,
since (pairwise) relatedness can be thought of as a measure of the recipient’s ability, relative
to that of the donor, to transmit a given trait (here a strategy) to the next generation (recall

15



Hamilton’s rule above). When λ (x̂) > 0, however, a transfer of own payoff to neighbors has
consequences which also need to be taken into account in the substitution rate.

To see this, let us first consider the case when there is but one neighbor, that is n = 2. A
payoff transfer to this neighbor increases competition from the neighbor at rate λ (x̂) (since
λ (x̂) measures the relative increase in competition in the neighborhood of an individual
when its payoff is varied, see (15)). In that case, the fitness benefit to the donor from giving
the transfer to the neighbor is reduced by λ (x̂), so that the numerator in (14) becomes
r (x̂, x̂)− λ (x̂). Moreover, a transfer of resources to the neighbor alleviates the competition
that the neighbor experiences, and the neighbor is related to the donor according to coeffi cient
r (x̂, x̂). Hence, the cost of the transfer is reduced by λ (x̂) r (x̂, x̂), which explains the
denominator in (14).

Second, when there are multiple neighbors, n > 2, a transfer given to one neighbor
enhances the competition by λ (x̂) / (n− 1), but also for the (n− 2) other neighbors, each of
which is related to the donor according to coeffi cient r (x̂, x̂). Therefore, the fitness benefit
of the transfer to the donor is reduced by λ (x̂) / (n− 1) times the term in square brackets
in the numerator; which explains the numerator of κ (x̂). In the denominator, the cost of
the transfer is still reduced by λ (x̂) r (x̂, x̂), which is the expected alleviation of competition
that the transfer induces for the individual’s neighbors (recall that λ (x̂) accounts for all
neighbors through the term (n− 1)).

3.2 A base-line evolutionary scenario

We illustrate these first results in a canonical evolutionary scenario. Suppose that traits
are genetically determined. The success of a trait then depends on the number of surviving
biological offspring that its carriers are able to produce. We consider the simplest possible
scenario that captures this idea. For simplicity, assume that reproduction is asexual, i.e.,
each offspring inherits the trait of its single parent. There are three stages within each
demographic time period, after play of the material game. In Stage 1, each adult produces
a Poisson-distributed number of offspring (clones), and then dies. In Stage 2, each offspring
either stays in his or her natal island and aspires to replace a deceased adult there, or
migrates to another, randomly chosen island, where she aspires to replace a deceased adult.
Individual offsprings’migration decisions are statistically independent, and offspring who
migrate disperse uniformly to the other islands, with statistical independence between their
destinations. In Stage 3, in each island the deceased adults are replaced by (uniformly)
randomly drawn aspiring offspring, native and immigrant. The fortunate ones settle and
become adults while the unfortunate ones die.17 In this baseline biological scenario, with
non-overlapping generations, the fitness of individual i writes:

w (πi,π−i, π
∗) =

(1−m)nf (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
+
mf (πi)

f (π∗)
, (17)

17We assume that the total number of offspring is large enough for the probability of there being fewer
aspiring offspring than there are deceased adults at an island to be negligible.
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where 0 < m ≤ 1 is the probability for each newborn to migrate to another island, and
f (πi) > 0 is i’s expected number of offspring, or fecundity. The first term is the expected
number of i’s offspring who manage to secure a “breeding spot”on the natal island. This
term is the product of three factors: (a) the probability for not migrating, (1−m); (b) the
number of available spots on the island, n; and, for each available spot, (c) the competition
for the spot, among native and migrating offspring from other islands, where f (π∗) is the
fecundity in the population at large. The second term is the expected number of i’s offspring
who migrate and manage to secure a breeding spot on another island: each offspring who
migrates to another island competes against nf (π∗) other individuals for the n available
spots.18

In the appendix we show that in this scenario, for any given reference strategy x, the
coeffi cient of pairwise relatedness is given by

r (x, x) =
(1−m)2

n− (n− 1) (1−m)2 , (18)

while the coeffi cient of local competitiveness is given by

λ (x) =
(n− 1) (1−m)2

n− (1−m)2 . (19)

Both coeffi cients turn out to be independent of the reference strategy x. Hence, the utility
functions ux and vx, defined in equations (12) and (13), are independent of what strategy
x is used in the population at large and can, in this evolutionary scenario, be explicitly
parametrized in terms of the migration rate m and group size n. Both coeffi cients, pairwise
relatedness and local competitiveness, are strictly positive for all n and all m ∈ (0, 1). By
contrast, if m = 1, any two migrants from the same island have zero probability of arriving
at the same island (since there are infinitely many islands and offspring migrate individually
and statistically independently), and hence the probability of interacting with an individual
from the same lineage is nil, r (x, x) = 0, and, moreover, there is no fitness benefit from
out-competing neighbors materially, λ (x) = 0. Note also that κ (x) = 0 when m = 1.
Interestingly, however, it turns out in this example that, by substituting (18) and (19) into
(14), we have

κ (x) = 0 (20)

for all n and m. In other words, in this evolutionary scenario, for any migration rate
m ∈ (0, 1) any uninvadable strategy must be as if individuals have a Kantian concern at
the level of fitnesses (r (x, x) > 0), but are purely selfish at the level of material payoffs
(κ (x) = 0). In biology, this result is known as Taylor’s (1992a) cancellation result.19 It
is a pivotal result of strategy evolution in spatially structured populations, noticed initially

18Since the total number of islands is infinite, the probability is zero for the event that more than one of
i’s offspring happen to migrate to the same island. For a more detailed derivation of an equation like (17)
from the random variables underlying reproduction, see Lehmann and Balloux (2007).

19To see why this is the case, consider a focal individual expressing an action producing B/ (n− 1) units
of fecundity (by way of increasing material payoff) for each of her group neighbors. This implies that the
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in agent-based simulations by Wilson, Pollock, and Dugatkin (1992), proven formally by
Taylor (1992a) for the island model, and then shown to hold for arbitrary migration patterns
between groups (e.g., Taylor, 1992b, Rousset, 2004, and Ohtsuki, 2012). This result is a
useful yardstick for understanding how changes in the transmission scenario can tip the
balance either in the direction of pro-sociality or anti-sociality. Such tipping effects will be
investigated in Section 4.

3.3 Weak selection

The key implication of weak selection is that in the limit as the scaling factor δ tends to
zero (see equation (2) and Assumption [S]), the matching probabilities pk (y, x), while still
depending on the transmission events, do not depend on the strategies x and y used in
the population, and are evaluated under the neutral process induced by the corresponding
transmission events. The probability for a randomly drawn descendant of an ancestor, be it
a resident or mutant, to coexist in its island with k other descendants of the same ancestor is
then solely determined by the vital rates in a population in which everybody uses the same
strategy x, no matter which. Let p0

k denote the matching probabilities in the neutral process,
and write p0 =

(
p0

0, p
0
1, ..., p

0
n−1

)
.

Letting B0
NE (f, g) ⊆ X2 denote the set of (type-homogenous Bayesian) Nash equilibria

under matching profile 〈q0,p0〉, we call a utility function f ∈ F uninvadable if W (ỹ, x̃) ≤
W (x̃, x̃) for all utility functions g ∈ F and all (x̃, ỹ) ∈ B0

NE (f, g).

As a stepping stone towards our result on preference evolution, we begin by deriving a
lemma under strategy evolution. For this purpose, we define the lineage payoff-advantage of
a mutant strategy y ∈ X in a population of residents using strategy x ∈ X as

Π (y, x) =
n−1∑
k=0

p0
k · π̃(k) (y, x) , (21)

where π̃(k) (y, x) is the mutant’s payoff advantage when there are k other mutants in her or
his island, defined by

π̃(k) (y, x) = π (y|k)− λ0 ·
[

k

n− 1
π (y|k) +

n− 1− k
n− 1

π (x|k)

]
. (22)

The first term in this expression is the payoff of a descendant of the initial mutant who
finds herself in an island with k other such descendants. The term in square brackets is the

gains in the number of fitness units to the trait underlying the action is B · r (x, x), since each neighbour
carries the type of the focal individual with probability r (x, x). Producing additional offspring, however,
increases local competition if these offspring do not migrate to other groups. This implies that the loss in
the number of fitness units to the type underlying the action is B · [1/n+ r (x, x) (n− 1)/n](1−m)2, since
each non-dispersing offspring [probability (1−m)] of the focal individual and of her related neigbours enters
in competition with probability (1 − m) with the new created offspring, and where the focal individual’s
offspring is a fraction of 1/n of the group’s offspring experiencing the increase in competition. Owing to the
fact that r (x, x) = (1−m)2 [1/n+ r (x, x) (n− 1)/n] (see equation (94) in the appendix), fitness gains and
losses exactly cancel out.
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average material payoff earned by the other members in the island. Under weak selection,
the coeffi cient of local competitiveness is obtained by evaluating the marginal effect of own
material payoff on all neighbors’fitnesses, relative to its effect on own fitness, in the limit as
the intensity of selection goes to zero:

λ0 = λ(x)|δ=0 . (23)

Likewise, and for further use below:

r0 = r(x, x)|δ=0 (24)

and

κ0 =
r0 − λ0 [1/ (n− 1) + (n− 2) r0/ (n− 1)]

1− λ0r0

. (25)

The lineage payoff-advantage is the average payoff advantage of the initial mutant’s de-
scendants. It reflects two facts implied by population structure. First, it measures the fitness
consequences of an individual’s ability to out-compete his neighbors, with λ0 capturing the
importance of doing so. Second, it reflects the fact that descendants of the initial mutant who
stay in the natal island interact with each other, as captured by the matching probabilities
p0
k.
20

A strategy is uninvadable under weak selection if and only if there is no strategy that
would have a lineage payoff-advantage if appearing as a rare mutant. Formally:21

Lemma 2 A strategy x̂ ∈ X is uninvadable under weak selection if and only if

Π(y, x̂) ≤ Π(x̂, x̂) ∀y ∈ X. (26)

Moreover, 1− n ≤ λ0 ≤ 1.

Condition (26) says that a resident strategy x̂ is uninvadable if it also maximizes the
lineage payoff-advantage that a mutant could hope to get in a population where x̂ is the
resident strategy. In doing so, such a strategy preempts entry by any mutant strategy. This
lemma in turn implies:

Corollary 1 A utility function f ∈ F is uninvadable under weak selection if and only if
Π (ỹ, x̃) ≤ Π (x̃, x̃) for all utility functions g ∈ F and all (x̃, ỹ) ∈ B0

NE (f, g).

20In particular, π̃(k) (x, x) = (1− λ0)π (x|k), where the factor in parenthesis accounts for competition
among lineage members.

21This result agrees with a result in Lehmann, Alger, and Weibull (2015); see equation (14) therein.
However, in that paper we did not allow for reproductive processes where offspring from the same group can
reproduce in the same non-natal group, while we do allow for that here. Furthermore, we did not consider
cultural transmission – which we do here – and here we identify the functional form for λ0, see (23), and
we determine a lower bound for λ0. Finally, the proof of the present, more general result is more detailed
and self-contained, than the previous proof.
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For any given type f ∈ F , let X (f) be the set of symmetric Nash equilibrium strategies,
i.e., which satisfy equation (10). Thanks to Lemma 2 and Corollary 1, we are in a position
to establish a general result for uninvadable utility functions under weak selection. In order
to express this result, we need some notation and a definition. For any probability vector
p = (p0, p1, ..., pn−1), any player i, and any strategy profile x ∈ Xn, let z̃ be a random
strategy-profile such that with probability pk (for each k = 0, 1, .., n − 1) exactly k of the
n − 1 components in x−i are replaced by xi, with equal probability for each subset of k
replaced components, while the remaining components in x−i keep their original value. Let
the utility function v0 be defined by:

v0 (xi,x−i) = Ep0

[
π (xi, z̃−i)− λ0 ·

∑
j 6=i
π (z̃j, z̃−j) | x

]
∀x ∈ Xn. (27)

We note that in v0 we have a utility function that does not depend on any reference strategy.
We note that if λ0 = 0 and p0

0 = 1, v0 is but that of the familiar Homo oeconomicus.
By contrast, if λ0 6= 0 and p0

0 < 1, the individual evaluates any strategy profile (xi,x−i)
by pondering his expected material payoff advantage over his neighbors, π (xi, z̃−i) − λ0 ·∑

j 6=iπ (z̃j, z̃−j), if all, some, or none of the others in her island would use the same strategy
as herself (drawn randomly according to p0), instead of playing their strategies, given by
x−i. A positive weight λ0 > 0 expresses a form of envy or spite. If instead λ0 < 0,
then it is as if individuals care positively, or altruistically, about their neighbors’material
payoffs. Because the utility function v0 expresses both a Kantian concern and a comparison
with others’material payoffs, we refer to an individual with such a utility function as a
competitive Kantian. Our next result establishes that selection favors competitive moralists
of the variety represented by the utility function v0, and that all other utility functions,
unless they have an identical best reply to some resident equilibrium, are selected against:

Proposition 4 The utility function v0 is uninvadable under weak selection. A utility func-
tion f ∈ F is invadable under weak selection if there exists a x̃ ∈ X (f) such that x̃ /∈ X (v0).

This result provides a precise, operational, and general answer to our initial “as if”-
question, for the case of weak selection.22 To see more concretely what it means, consider
the case n = 2. Then p0

1 = r0, and

v0(xi, xj) = (1− r0) · [π (xi, xj)− λ0π (xj, xi)] + r0 · [π (xi, xi)− λ0π (xi, xi)] . (28)

22The goal function v0 (xi,x−i) is the average payoff advantage (increment in individual fitness) to indi-
vidual i over the p0k distribution. We note that a representation of this goal function more in line with the
biologists way of thinking about maximizing behavior; namely, in terms of individual “inclusive fitness”can
be obtained by writing v0 (xi,x−i) = −c(xi,x−i) + r0b(xi,x−i), where the “cost” c(xi,x−i) and “benefit”
b(xi,x−i) functions are obtained as the intercept and the least square regression coeffi cient, respectively, by
minimizing predicted and observed payoff advantage over the p0k distribution (with the source of variation
being the frequency k/(n − 1) of the neighbours of i expressing strategy xi). Such regression procedures,
whether univariate or bivariate, are used to obtain inclusive fitness representations of fitness measures and
are prevalent in evolutionary genetics (Frank, 1998, Lehmann et al., 2016, Fisher, 1930).
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Reorganizing the right-hand side in (28) reveals motivational factors familiar from behavioral
economics. First, by writing

v0(xi, xj) = (1− λ0) (1− r0) π (xi, xj) + λ0r0 [π (xi, xj)− π (xj, xi)] + (1− λ0) r0π (xi, xi) ,
(29)

the utility function can be interpreted as the sum of three terms, where the first represents
“pure self-interest”(own material payoff), the second a “comparison with the Joneses”(the
difference between own material payoff and that of the neighbor), and the third a “Kantian”
concern (what is the “right thing to do if others in the population act like me”). Second, by
instead bundling the terms as follows, the utility function can alternatively be interpreted
as a combination of pure self-interest, “net altruism”(altruism minus spite), and a Kantian
concern:

v0(xi, xj) = (1− r0) π (xi, xj) − λ0r0π (xj, xi) + (1− λ0) r0π (xi, xi) . (30)

Irrespective of how one chooses to bundle the terms, an individual with utility function u0

takes into account not only his or her material self-interest, but also other-regarding motives
involving altruism or spite if λ0 (1− r0) 6= 0 and a Kantian concern if (1− λ0) r0 6= 0.

Finally, we note that when the material payoff function π is continuously differentiable,
the necessary first-order condition for a strategy x̃ to be a symmetric Nash equilibrium
strategy of the game in which all players have utility function v0 boils down to

π1

(
x̃, x̃(n−1)

)
+ (n− 1)κ0 · πn

(
x̃, x̃(n−1)

)
= 0. (31)

The coeffi cient κ0 thus allows to determine whether, on balance, uninvadable strategies are
pro-social, purely individualistic, or anti-social, for any island size. We finally note that the
index of assortativity used in some of the literature on the evolutionary stability of strategies
and preferences (Bergstrom, 2003, Alger and Weibull, 2013, 2016) can be interpreted as the
parameter κ0 of the present model, and is hence driven both by relatedness and by local
competition.

4 Evolutionary scenarios

In this section we calculate the coeffi cients of relatedness and of local competitiveness in
three evolutionary scenarios. We determine whether, on balance, behaviors are pro- or anti-
social at the level of material payoffs, i.e., whether the coeffi cient of scaled relatedness is
positive or negative, and how this depends on the different elements of the scenarios.

4.1 Survival

We start by generalizing the baseline transmission scenario in Section 3.2, by allowing for
the possibility that adults survive from one demographic time period to the next, that is,
the possibility of over-lapping generations. Specifically, assume that at the end of Stage 1 an
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individual i who obtained material payoff πi in the material game survives with probability
s (πi) ∈ [0, 1]. In this biological scenario the fitness of individual i then writes:

w (πi,π−i, π
∗) = s (πi) + m · [1− s (π∗)]n · f (πi)

nf (π∗)
(32)

+ (1−m) ·
(
n−

n∑
j=1

s (πj)

)
· f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
.

The effect of survival is readily seen by considering the case where the survival probability
is constant, s (πi) = s0. We show in the appendix that the coeffi cient of relatedness then
equals

r (x, x) =
(1−m)2 + s0 (1−m2)

n− (n− 1) (1−m)2 + s0 [1 + (n− 1)m2]
, (33)

and that the coeffi cient of local competitiveness equals

λ (x) =
(n− 1) (1−m)2

n− (1−m)2 . (34)

Local competitiveness is the same as in the baseline scenario without survival (see (19)),
since the survival rate is the same for all individuals, and hence it is still only the effect
of material payoffs on the fecundities that matter for local competitiveness. By contrast,
relatedness is higher (see (18)), since an individual who survives and does not migrate,
faces a positive probability of interacting locally with his or her own descendants. For all
intermediate migration probabilities, m ∈ (0, 1), both r (x, x) and λ (x) lie strictly between
zero and one. Moreover, both are decreasing in the migration ratem and r (x, x) is increasing
in the survival rate s0. Substituting (33) and (34) into (14), we obtain:

κ (x) =
2 (1−m) s0

2 (1−m) s0 + n [2−m (1− s0)]
, (35)

which is strictly positive for any s0 > 0. In this scenario, then, a positive survival probability
induces pro-sociality. However, note that the degree of pro-sociality diminishes with group
size. In fact, it vanishes as groups tend to become infinitely large. Figure 1 shows how κ (x)
depends on the migration rate m when s0 = 1/n, for n = 2 (black solid) and n = 10 (black
dashed), and when s0 = 0.8 for n = 2 (blue) and n = 10 (blue dashed), as well as s0 = 0
(pink). Furthermore, pro-sociality declines with m, for any given island size n.
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Figure 1: The value of κ (x) as a function of the migration rate m.

4.2 Wars

We now revert to the biological scenario with non-overlapping generations, and augment it
by introducing wars between groups. Following play of the material game in a demographic
time period, but before reproduction, death of the adults, and migration by the offspring,
islands are randomly engaged in pairwise wars, under exogenous uniform random matching.
In each war, one island wins and the other loses. All individuals in the losing island thus
die before they reproduce; the winning island takes over all reproductive resources of the
other island and thus doubles its members’fecundity. Technically, the double-sized pool of
offspring of the winning island will split in two halves, one for each of the two islands, that
they will treat as their “home”island. Let 0 ≤ ρ ≤ 1 denote the probability that any given
island is drawn into war, the war risk, and let g (π, π∗) denote the conditional probability
that an island with material payoff profile π ∈ Rn wins a war when the average payoff in
the rest of the population is π∗, conditional on being drawn into war. Here g is assumed
to be increasing and permutation invariant with respect to the material payoffs earned by
the inhabitants of the island in question. In other words, g has the properties of standard
welfare functions. In this scenario the fitness of individual i writes

w (πi,π−i, π
∗) = [(1− ρ) + 2ρg (π, π∗)] ·

[
m · f (πi)

f (π∗)
+ (36)

(1−m)n · f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)

]
.

The difference with the baseline scenario is the first factor, which contains two terms: the
probability that the individual’s island will not go to war (1−ρ), and the probability that the
island will go to war and win times two (2ρg (π, π∗)), where the factor two comes from the
assumption that a winning island doubles its fecundity and spreads its offspring uniformly
over the two islands it now possesses. To see why the second factor is the same as the
right-hand side of (17), note that migrants who arrive at any island, irrespective of whether
this island has been involved in war or not, come with probability 1− ρ from an island that
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was not in war, and (recalling that the average probability of winning a war is 1/2) with
probability ρ/2 from an island that won a war. Moreover, victorious islands send out twice
as many migrants as islands that did not go to war. Hence, the expected number of migrants
who compete for the breeding spots in any given island ism (1− ρ+ 2ρ/2)·f (π∗) = mf (π∗),
the same as in the absence of wars.

We show in the appendix that the coeffi cient of relatedness then coincides with that in the
baseline scenario, see (18) in Section 3.2. This is because the only event in which a randomly
drawn individual can belong to the same local lineage as a randomly drawn neighbor, is when
both belong to an island which did not lose a war, and both stayed in their natal island.
Since the risk of losing a war applies to the whole island, while the migration probability
applies to the individual, only the latter matters for relatedness.

The coeffi cient of local competitiveness equals

λ (x) = −
(n− 1)

[
2ρgn (π∗, π∗)− (1−m)2f ′(π∗)

nf(π∗)

]
2ρgn (π∗, π∗)− [n− (1−m)2] f

′(π∗)
nf(π∗)

, (37)

where gn denotes the partial derivative of g with respect to the n-th argument (since g is
evaluated in a homogenous population here, and since g is invariant under permutation of
the n first arguments, gn simply captures the marginal effect of an increase in the material
payoff of any island member on the probability of winning a war). While the expression is
involved, it can readily be seen (by considering a scenario in which f ′ (π∗) = 0, for instance)
that the effect of material payoffs on the strength in wars can make λ (x) negative, while in
the two scenarios without wars studied above, it is always positive. In other words, conflicts
between groups reduce spite, and may even reduce it so much that it turns into altruism,
i.e., a positive weight attached to the neighbors’material payoffs. Indeed, by substituting
(18) and (37) into (14), we obtain:

κ (x) =
ρ

ρ+ (2−m)m
2gn(π∗,π∗)

f ′(π∗)
f(π∗)

, (38)

which is increasing in the marginal effect gn on the probability of winning wars.

We next turn to weak selection in order to obtain more explicit results on the effects of
wars on local competitiveness and scaled relatedness. Recalling the notation under weak se-
lection (see (2)), let each individual’s fecundity be exponentially increasing in the individual’s
material payoff,

f (π̄i) = f0 · exp (δf · πi) , (39)

where f0 > 0 is baseline fecundity and δf > 0 represents the intensity of selection with
respect to fecundity. Furthermore, assume that the probability of winning a war depends on
the two islands’aggregate material payoffs according to

g (π̄, π̄∗) =
exp (V (π̄))

exp (V (π̄)) + exp (V (π̄∗))
, (40)

where π̄ = δv ·π and π̄∗ = δv ·π∗, and V : Rn → R is a strictly increasing symmetric function
(like any standard welfare function). Its values V (π̄) and V (π̄∗) represent the “strengths”
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of the two islands. This is a logistic version of the Tullock contest function (Tullock, 1980),
see Skaperdas (1996). It spans a continuum of cases, from all islands having the same chance
to win any war, if the intensity of selection with respect to wars be nil, to the case in which
the materially wealthiest island is almost sure to win any war (is the intensity of selection
is infinitely large). Letting δf = σf · δ in equation (39) and δv = σv · δ, for non-negative
parameters σf ≥ 0, σv ≥ 0, and δ > 0, we can let both sensitivity parameters tend to zero
at proportional rates by focusing on the limit as δ → 0. Below, however, we let σv = σf ,
and thus write δ for δv.

Many scenarios can be imagined, of which we consider two. First, if an island’s strength is
proportional to its total material payoff, i.e., if V (π̄) = δ·

∑n

i=1
πi, then local competitiveness

takes the following form (see the appendix):

λ0 =
(n− 1) (1−m)2 − ρ (n− 1)n/2

n− (1−m)2 + ρn/2
. (41)

This changes sign when the risk of war is ρ∗ = 2 (1−m)2 /n; it is positive at lower risks
of war and negative at higher risk levels for war. Since in the baseline scenario with non-
overlapping generations uninvadability under weak selection requires individuals to be selfish
on balance (see Section 3.2), the reduction in local competitiveness that the war risk entails,
leads to pro-sociality on balance; indeed, for any ρ > 0 we obtain κ0 > 0:

κ0 =
ρ

ρ+ 2m (2−m)
. (42)

Moreover, the threat of war (ρ > 0) nourishes pro-sociality: κ0 is increasing in the risk of
war, ρ, and is independent of group size, n.23 Figure 2 shows κ0 as a function of the migration
rate m, for war risk ρ = 0 (the pink curve), ρ = 0.4 (the orange curve), and ρ = 0.8 (the
blue curve).24

23Similar results obtain if groups are instead exposed to the threat of environmental shocks, and if some
aggregate measure of the group’s material wealth enhances its ability to withstand such shocks (see, e.g.,
Eshel, 1972, and Aoki, 1982, for models considering such cases under strategy evolution).

24The analytical models of Bowles (2006, 2009) for the evolution of “parochial altruism”are also close to
our scenario with wars; in particular, the expected number of groups [1− ρ+ 2ρν (π, π̄∗)] to which a focal
group has access for reproduction after warfare also appears in Bowles’s formalization. However, since in
his model there are no explicit assumptions that allow to close the lifecycle, it is impossible to derive the
explicit values of λ0, r0, and κ0 for his model.
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Figure 2: The value of κ0 as a function of the migration rate m.

Second, while it is arguably a natural bench-mark case to assume that the probability of
winning a war depends on the group’s total material payoff, sometimes the success or failure
in conflicts depends on the strongest or the weakest member of one’s group.25 A general
case, that allows for intermediate cases between dependence on the group’s total material
payoff and its minimal payoff, is obtained by using a CES-functional form. Let

V (π̄) = δ ·
[∑n

i=1
πci

]1/c

(43)

for some c 6= 0. For c = 1 we obtain the previous case, and as c→ −∞, V (π̄)→ mini {πi}
(Leontieff production function). Hence, when c is negative and large in absolute terms, an
increase in the poorest group member’s material payoffwill increase the winning probability,
and hence have a positive effect on others’fitness. This suggests a Rawlsian, rather than
Benthamite concern for other group members’material well-being. Individuals with medium
or high material payoffs may then behave as if they had a particular concern for the poor.
Their other-regarding preferences might also be like those proposed in Fehr and Schmidt
(1999), according to which people have stronger negative feelings towards inequity when
they themselves are poorer than in the opposite case. We finally note that our evolutionary
model suggests that a morality term be added to such pro-social concerns, a term that
is absent from Fehr’s and Schmidt’s model. We leave analysis of the implications of such
alternative forms for the function V to future research.

4.3 Culture

We now turn to a scenario in which the traits are carried over from one generation to the next
by cultural transmission. In every demographic time period, each adult dies and is replaced
by exactly one child, who searches a trait to emulate, from its deceased (single) parent,
another adult in its island, or an adult in another island. With probability s (πi) ∈ [0, 1],
the loyalty of i’s child, the (unique) child of individual i, emulates its parent’s trait. With

25A host of other hypotheses about group strength could be explored, see, e.g., Konrad (2014) and the
references therein.
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probability 1 − m a non-loyal child searches for a trait to emulate among the (now dead)
grown-ups in its natal island (including its own parent). With the complementary probability,
m > 0, such a child draws a sample of n grown-ups from the population at large, and
emulates the trait of one of them. The probability that an adult on any island is chosen
as role model, when compared to others in her island (by a non-loyal child), depends on
her trait’s attractiveness relative to the attractiveness of the other grown-ups’traits in her
island. Likewise, the probability that a child who searches outside its native island will pick a
certain island, when looking for a “role model”, is assumed to be proportional to the island’s
relative attractiveness in the world at large.

Let w (πi,π−i, π
∗) be the expected number of children who emulate their trait from an

individual with material payoff πi when the other island members earn the material payoff
vector π−i, and individuals in all other islands earn material payoff π∗. Then

w (πi,π−i, π
∗) = s (πi) + m · [1− s (π∗)] · f (πi)

f (π∗)
(44)

+ (1−m) ·
(
n−

n∑
j=1

s (πj)

)
· f (πi)∑n

j=1 f (πj)
,

where, for any individual j in i’s island, f (πj) > 0 is the attractiveness of the trait used by
j. The first term in (44) is the probability that i’s child loyally emulates its parent’s trait,
without comparison with other adults’traits.26 The second term concerns the event that
children from other islands emulate their trait from one of the parents on i’s island. Written
more explicitly, this term can be spelled out as

mn [1− s (π∗)] ·
∑n

j=1 f (πj)

n · f (π∗)
· f (πi)∑n

j=1 f (πj)
, (46)

where the first factor is the expected number of children who search outside their native
islands, the second factor is the probability for each such child to decide for i’s island, and
the third is the conditional probability that it will then choose i as role model. The third
term concerns the event that some or all the children in i’s island emulate their trait from
one among the parents on the island. The product of the first two factors in this term is
the expected number of such children and the third factor is the probability, for each such
child, that it will choose to imitate individual i. Note that, comparing this scenario to the
biological scenario with overlapping generations, loyalty plays a similar role to survival, and

26When m = 1 and payoff affects only attractiveness so that f (πi) = f (π∗)), then (44) writes

w (πi,π−i, π
∗) = s (πi) + 1− s (π∗) , (45)

which is the individual fitness function under the demographic assumptions of the Bisin and Verdier (2001)
model when the mutant frequency vanishes (to see this, set qi to 0 in equation (3) in Bisin and Verdier, 2001).
Comparing (44) to (45) shows the similarity and the difference between the two models from a demographic
point of view. By contrast to our model, the population in Bisin and Verdier (2001) is not structured into
islands and they assume no effects of traits on f . Furthermore, there is no strategic interaction between
individuals in Bisin and Verdier (2001).
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attractiveness to fecundity. Moreover, the cultural import propensity m plays a similar role
to migration. (These observations motivated the notation.)

Then:

r (x, x) =
(1−m)2 + s (π (x)) (1−m2)

n− (n− 1) (1−m)2 + s (π (x)) [1 + (n− 1)m2]
, (47)

where x = (x, ..., x) ∈ Xn, and

λ (x) =
(n− 1) (1−m)

n− 1 +m
, (48)

which leads to

κ (x) = − (1−m) [1− s (π (x))]

2n− [m (n− 1) + 1] [1− s (π (x))]
. (49)

Comparison with the biological scenario with overlapping generations reveals that the co-
effi cients of relatedness are the same, but that for any m < 1 the coeffi cient of local com-
petitiveness is larger under cultural transmission. The enhanced competitiveness is strong
enough to lead to anti-sociality, since κ (x) < 0 obtains if and only if (1−m) [1− s (π (x))] <
(2−m [1− s (π (x))])·n, an inequality which holds for all parameter values. In this example,
cultural transmission thus leads to anti-sociality, and anti-sociality is stronger at low values
of m. This is because a low cultural import rate enhances local competitiveness. Note that
although genetic and cultural transmission here lead to opposite predictions regarding social-
ity, one qualitative similarity that appears is that like survival under genetic transmission,
loyalty under cultural transmission has a positive effect on sociality, κ (x). We also note that
the negative pro-sociality vanishes as groups tend to become infinitely large: κ (x) → 0 as
n→∞.
To illustrate this, Figure 3 shows that κ (x) is strictly negative for all m < 1, for different

loyalty rates and different island sizes: for s0 = 0 and n = 2 (the pink curve), s0 = 0.4 and
n = 2 (the orange curve), s0 = 0.8 and n = 2 (the blue curve), s0 = 0 and n = 10 (the pink
dashed curve), s0 = 0.4 and n = 10 (the orange dashed curve), s0 = 0.8 and n = 10 (the
blue dashed curve).

Figure 3: The value of κ (x) as a function of the cultural import rate m, for different
degrees of background loyalty of offspring towards parents.
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4.4 Approximation of the neutral distribution

In the three scenarios above, the coeffi cients of relatedness and of local competitiveness where
obtained in closed form. By contrast, the neutral distribution p0

k, required to fully determine
the v0 utility function, cannot be obtained in closed form for these scenarios. However,
an approximate closed-form expression, in terms of n and r0, can be obtained. Standard
populations genetics results (see e.g., Lessard, 2007, and references therein) suggest that the
neutral distribution of types in an island model with constant group size, and with population
share of mutants ε > 0, is well approximated by way of the hypergeometric distribution

φj(ε) =

(
j + ωε− 1

j

)(
n− j + ω(1− ε)− 1

n− j

)
/

(
n+ ω − 1

n

)
, (50)

where φj(ε) is the probability that there are j = 0, 1, .., n mutants in any given group, and
ω = r0/(1 − r0) (see Lessard, 2007, equation (7)). Since p0 =

(
p0

0, ..., p
0
n−1

)
is the limit

distribution when ε→ 0 of the number of other mutants in a given mutant’s group, we have

p0
k = lim

ε→0
(k + 1)φk+1(ε)/

(
n∑
j=1

jφj(ε)

)
, (51)

for k = 0, 1, ..., n− 1. Upon rearrangements, this produces

p0
k =

(
n

k + 1

)
· (k + 1)ω

n
· Γ(k + 1)Γ(ω + n− k − 1)

Γ(ω + n)
, (52)

where Γ is the gamma function. This distribution depends only on group size n and pairwise
relatedness r0.

Numerical comparison between this approximation for the above evolutionary scenarios
(that can all be subsumed under the relatedness in (47)) and the exact distribution shows
that the average total variation between the approximate and exact distributions is quite
small. Sampling randomly 10 000 values of s and m when n = 5 gives an average total
variation of 0.005, a variation that should diminish with n (see Lessard, 2007). It can also
be shown that in the special case of a Moran process (s (πi) = 1/n) the approximation is in
fact exact. (Indeed it can be verified that the expression in (52) then reduces to equation
D.6 in Lehmann, Alger, and Weibull, 2015.)

5 Relations to the evolutionary biology literature

Our analysis builds on the island model, originally due to Wright (1931), to formally ana-
lyze how migration patterns between groups, and the competition for resources within and
between groups, may impact the qualitative nature of the preferences that evolutionary
forces select for. In evolutionary biology, the island model is the textbook model for under-
standing the effect of migration and group size on population structure (e.g., Cavalli-Sforza
and Bodmer, 1971, Hartl and Clark, 2007; with our equation (18) being the paradigmatic
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measure of relatedness derived by Wright 1943), and it has become a work-horse model to
analyze conditions favoring pro- and anti-sociality at the level of fitness components (sur-
vival and reproduction) in spatially structured populations. The early literature considered
traits affecting environmentally induced group extinction (e.g., Eshel, 1972, Aoki, 1982);
this is reminiscent of our scenario with wars, but with the probability of surviving a shock
depending only on the behaviors in the focal group. This research produced the insight
that limited migration tends to favor pro-sociality, at the fitness level. Later work showed
that when traits impact individual fecundity, population structure tends to strengthen lo-
cal competition, ultimately leading to a situation where local competition cancels the effect
of relatedness (Wilson, Pollock, and Dugatkin, 1992, Taylor 1992a). These results spurred
an extensive theoretical literature seeking to delineate how the assumptions pertaining to
demography, life-history, the environment, and the modes of transmission, tip the balance
in favor of pro- or anti-sociality at the survival or fecundity level, and qualitatively cover
our three transmission scenarios (e.g., Taylor and Irwin, 2000, Gardner and West, 2006,
Johnstone and Cant, 2008, Lehmann, Foster, and Feldman, 2008, Lion and Gandon, 2010,
Bao and Wild, 2012, and Alberto et al. 2017, for a few relevant examples). In such models
with differentiable fitness functions, one generally obtains a first-order condition at the vital
rate level which is similar to the equation that we derive at the level of material payoffs
(our equation (16)), but with material payoff being replaced by survival or fecundity. In this
first-order condition a scaled relatedness coeffi cient aggregates all the consequences of spatial
structure. This work is reviewed by Lehmann and Rousset (2010); see also Van Cleve (2015)
and Dos-Santos and Peña (2017).

Since we assumed that vital rates are functions of material payoffs, in our setup scaled
relatedness is represented by the marginal rate of payoff substitution, κ(x). By contrast to
the previous literature, our derivation of the first-order condition at the level of material
payoffs (equation (16)) allows us to have a single substitution rate, even when strategies
affect multiple vital rates. A common feature of the biological literature is also that scaled
relatedness is expressed directly in terms of specifics of the transmission process (e.g., migra-
tion rate, group size, probability of war, cultural loyalty, see the aforementioned references).
By contrast, we decomposed scaled relatedness for constant demography, by showing ex-
actly how it depends on pairwise relatedness on the one hand, and local competitiveness on
the other hand. While the pairwise relatedness and scaled relatedness coeffi cients for the
baseline and overlapping-generations scenarios (eq. 33 and eq. 35) have been studied before
(see e.g., Taylor 1992, Taylor and Irwin 2000, Lehmann and Rousset, 2010, Akçay and van
Cleve 2012), we here derived the associated coeffi cients of local competitiveness for these
two scenarios, which are equivalent and do not depend on survival (i.e., equations (19) and
(34)). By contrast, the specifics of our war and cultural transmission scenarios depart from
those modelled previously. Hence, the corresponding coeffi cients of local competitiveness
and scaled relatedness coeffi cients did not appear previously in the literature.27

27Bowles (2006, 2009) models of the evolution of “parochial altruism”is the closest to our war scenario. In
particular, the expected number of groups to which a given group has access for reproduction after warfare,
[(1− ρ) + 2ρg (π, π∗)], also appears in Bowles’s model. However, since in his model there are no explicit
assumptions that allow to close the lifecycle of individuals, it is not possible to derive the explicit values
of λ0, r0, and κ0 for his model. For cultural transmission, the closest model to our own scenario is the
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The separation of scaled relatedness into coeffi cient of relatedness and coeffi cient of local
competitivens is valuable for two reasons. First, it allows to disentangle the pathways that
affect pro- and anti-sociality. Second, in the uninvadable goal function this decomposition
shows how pairwise relatedness and local competitiveness contribute to the weights attached
to self-interest (own material well-being), altruism or spite (others’material well-being), and
the Kantian concern (the material well-being that would arise should others choose the same
strategy).

In sum, our current approach is consistent with, and extends previous formalizations of
strategy evolution in the island model. Furthermore, with our evolutionary scenarios we
capture, qualitatively and quantitatively, canonical outcomes on the pro- and anti-sociality
spectrum, from strong pro-sociality (when competition is mainly between groups) to strong
anti-sociality (when competition is mainly within groups).

6 Conclusion

Going back to the advent of life on Earth, we all have a huge number of ancestors, each of
whom managed to survive until (s)he successfully reproduced. Our recent ancestors most
likely lived in small groups of hunter-gatherers (probably ranging from 5 to 150 grown-
ups), extending beyond the nuclear family, for more than two millions of years (Grueter,
Chapais, and Zinner, 2012, Malone, Fuentes, and White, 2012, van Schaik, 2016, Layton
et al., 2012). This is part of the environment of evolutionary adaptation of the human
lineage (e.g., van Schaik, 2016). Heritable behavioral traits should thus be a reflection of
the ability to successfully survive and reproduce in such a group-structured environment,
in which individuals’behavior certainly had effects on other group members. Our model
represents an attempt to formally analyze how migration patterns between groups, and the
competition for resources within and between groups, may impact the qualitative nature of
the preferences that evolutionary forces select for, when an individual’s preferences guide
his behavior in interactions within his group under incomplete information. By applying
established methods from population biology, we derive such predictions with the aim to
enhance insights of value for economics and other social sciences.

Our analysis reveals that uninvadable preferences are different when expressed at the
individual fitness level than when expressed at the level of the material payoffs that drive
fitness. At both levels, uninvadable preferences combine self-interest with a Kantian concern,
but at the material-payoff level there is also an other-regarding component. The Kantian
concern depends on relatedness and is driven by kin selection, that is, the fact that in
group-structured populations interactions leading to differential reproduction and survival
occur between individuals who are more likely to share a common ancestor (be it cultural or
genetic) who lived in their group than individuals sampled randomly from the population.
The concern for neighbors’material payoffs is driven by two opposing forces. On the one

model of Lehmann, Foster, and Feldman (2008). With s0 = 0, eq. (49) is equivalent to the anti-social scaled
relatedness equation (26) found in this previous work, but which was derived for a public goods game.
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hand, a negative concern due to local competition, that is, the reproductive benefit from
outcompeting neighbors, whose offspring compete locally with own offspring. On the other
hand, a positive concern due to global competition, that is, the reproductive benefit from
one’s group’s ability to win conflicts with other groups (or resist exogenous collective shocks,
such as natural disaster).

Because both relatedness and local competition arises as soon as individuals have any
propensity to stay in their natal group, our analysis implies that the selfish Homo oeco-
nomicus survives evolutionary pressure only in the highly unrealistic scenario in which all
individuals always leave their natal group. Thus, under any realistic transmission scenario
and population structure, and when individuals do not know each others’preferences, evolu-
tion leads to social preferences that include (a) own material payoff, (b) a Kantian concern
similar to the one expressed by Homo moralis preferences (Alger and Weibull, 2013, 2016),
and (c) a comparison between own and other group members’material payoffs, akin to
altruism/spite (Becker, 1976).

Our analysis further reveals whether, on balance, individuals behave pro-socially or anti-
socially at the level of material payoffs, in the sense that equilibrium strategies enhance or
reduce others’material payoffs. We show that, on balance, pro-sociality obtains if the co-
effi cient of pairwise relatedness exceeds the coeffi cient of local competitiveness weighted by
some factor depending on the transmission process, i.e., if the coeffi cient of scaled relatedness
is positive, and anti-socially if the reverse is true. Whether the former or the latter is true
depends on the specifics of the transmission process, as illustrated by three scenarios. In the
base-line biological scenario, survival enhances relatedness, and thus pro-sociality. In the
scenario with wars, if a group’s probability of winning a war depends positively on all group
members’material payoffs, it may be fitness-enhancing to exhibit altruism towards one’s
neighbor, on top of the Kantian concern. If the risk of war is high enough, this pro-social
effect may dominate the counter-social effect induced by local competition, and the net result
may be altruism. In such transmission scenarios, a combination of self-interest, altruism,
and morality obtains. Finally, in the cultural transmission scenario we consider, behavior
is, on balance, always anti-social. In a nutshell, under cultural transmission competition is
fiercer than under genetic transmission, and competitiveness then always outweighs related-
ness. Under these three transmission scenarios, the matching profiles can be (approximately)
characterized in terms of only pairwise relatedness and local competitiveness, which thus al-
lows to fully describe preferences in terms of these two population structure coeffi cients. We
have explored these three transmission scenarios in detail, but a host of other scenarios could
be considered. For instance, it would be interesting to model explicit age-structure within
groups, and intergenerational transfer of resources in order to understand the evolution of
social and time preferences in a cooperative breeding context.

We establish these results under weak requirements on individuals’information and cog-
nition. In particular, individuals need not know the material payoffs to others or the prefer-
ences of others. Moreover, our formalization allows for the possibility that in fact there are
(finitely) many interactions going on simultaneously, or that are randomly selected, and even
that each interaction involves only a subset of the inhabitants in an island. What is required
is symmetry in the sense that all individuals face the same probabilities of being involved in
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any one of the interactions and that the interaction at hand is aggregative and symmetric,
as defined in Section 2. The cognitive assumption is then that individuals understand what
interaction is at hand.

It is noteworthy that under weak selection the nature of the derived behaviors and pref-
erences are independent of the nature of the strategic interaction within islands. This follows
from the fact that the matching profiles are derived from the population structure, without
any reference to material payoffs. In a sense, evolution thus leads to social preferences where
the weights attached to its components– self-regard, other-regard, and Kantian concerns–
are the same for all strategic interactions that fall into the class studied here (symmetrically
aggregative material payoff functions).

We hope that the model framework proposed in this paper, and extensions thereof, will
prove helpful in understanding the impact of population structure on the evolution of human
behavior and preferences.

7 Appendix

7.1 Proof of Equation (8): Hamilton’s (marginal) rule

For x to be uninvadable it must be that, given x, y = x is a local maximum of

W (y, x) =
n−1∑
k=0

pk(y, x) w̃
(
y,y(k),x(n−1−k), x

)
, (53)

where y(k) is the k-dimensional vector whose components all equal y, and x(n−1−k) is the
(n− 1− k)-dimensional vector whose components all equal x, or ∂W (y,x)

∂y

∣∣∣
y=x

= 0. Writing

w̃j for the partial derivative of w̃ with respect to its j-th argument,

∂W (y, x)

∂y
=

n−1∑
k=0

[
∂pk(y, x)

∂y
w̃
(
y,y(k),x(n−1−k), x

)]
+ (54)

n−1∑
k=0

[
pk(y, x)

k+1∑
j=1

w̃j
(
y,y(k),x(n−1−k), x

)]
.

Noting that for y = x, w̃
(
y,y(k),x(n−1−k), x

)
= w̃

(
x,x(n−1), x

)
= 1, which is independent of

k so that it can be factored out in the first term, and that

n−1∑
k=0

(
∂pk(y, x)

∂y

∣∣∣∣
y=x

)
=

∂

∂y

(
n−1∑
k=0

pk(y, x)

)∣∣∣∣∣
y=x

=
∂

∂y
(1)

∣∣∣∣
y=x

= 0, (55)

the expression simplifies to

∂W (y, x)

∂y

∣∣∣∣
y=x

=

n−1∑
k=0

[
pk(y, x)

k+1∑
j=1

w̃j
(
y,y(k),x(n−1−k), x

)]∣∣∣∣∣
y=x

. (56)
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Permutation invariance further implies that for any j ≥ 2, w̃j
(
x,x(n−1), x

)
= w̃n

(
x,x(n−1), x

)
(it’s as if the individual whose marginal type change is under consideration were systemat-
ically labeled to appear as the last component in the vector x(n−1)). Noticing also that∑n−1

k=0

[
pk(y, x)w̃1

(
y,y(k),x(n−1−k), x

)]∣∣
y=x

= w̃1

(
x,x(n−1), x

)
, we can write:

∂W (y, x)

∂y

∣∣∣∣
y=x

= w̃1

(
x,x(n−1), x

)
+

n−1∑
k=1

[
pk(y, x)

k+1∑
j=2

w̃j
(
y,y(k),x(n−1−k), x

)]∣∣∣∣∣
y=x

(57)

= w̃1

(
x,x(n−1), x

)
+

n−1∑
k=1

[
pk(x, x)kw̃n

(
x,x(n−1), x

)]
= w̃1

(
x,x(n−1), x

)
+ (n− 1) w̃n

(
x,x(n−1), x

) n−1∑
k=1

[
kpk(x, x)

(n− 1)

]
= w̃1

(
x,x(n−1), x

)
+ r(x, x)w̃n

(
x,x(n−1), x

)
,

which owing to permutation invariance can also be written

∂W (y, x)

∂y

∣∣∣∣
y=x

= w̃1

(
x,x(n−1), x

)
+ r(x, x)

n∑
j=2

w̃j
(
x,x(n−1), x

)
. (58)

7.2 Proof of Proposition 1

Any Nash equilibrium strategy x̃ in the n-player game in which all players have utility
function ux̂ satisfies the necessary first-order condition

[1− r (x̂, x̂)] · w̃1

(
x̃, x̃(n−1), x̂

)
+ r (x̂, x̂) ·

n∑
j=1

w̃j
(
x̃, x̃(n−1), x̂

)
= 0, (59)

or
w̃1

(
x̃, x̃(n−1), x̂

)
+ r (x̂, x̂) ·

n∑
j=2

w̃j
(
x̃, x̃(n−1), x̂

)
= 0. (60)

If there exists a unique strategy x̂ that satisfies (8), and if x̂ is uninvadable, then the unique
solution to the previous equation must be x̃ = x̂. Hence, the unique candidate for a Nash
equilibrium strategy in the n-player game in which all players have utility function ux̂, is x̂.
Suppose that x̂ indeed is such a Nash equilibrium strategy. Suppose further that ux̂ is the
resident utility function, and consider some mutant utility function g 6= ux̂, whose carriers
play some ỹ satisfying (see (11))

ỹ ∈ arg max
y∈X

n−1∑
k=0

pk (x̂) · g
(
y, ỹ(k), x̂(n−k−1)

)
. (61)

Since x̂ is uninvadable, any such strategy ỹ gives rise to a local lineage fitnessW (ỹ, x̂) which
does not exceed 1. Hence, ux̂ is uninvadable.
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7.3 Proof of Lemma 1

Recalling that

w̃(xi,x−i, x) = w
(
π (xi,x−i) , (π (xj,x−j))j 6=i , π

∗ (x)
)
, (62)

we obtain

w̃1

(
x,
(
y(0),x

)
, x
)

= w1

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· π1

(
x,
(
y(0),x

))
(63)

+ (n− 1) · wn
(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
,

where
(
π
(
x,
(
y(0),x

)))(n−1)
denotes the (n− 1)-dimensional vector whose components all

equal π
(
x,
(
y(0),x

))
, and

w̃n
(
x,
(
y(0),x

)
, x
)

= w1

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
(64)

+ (n− 2) · wn
(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
+ wn

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· π1

(
x,
(
y(0),x

))
.

Substituting the last two equations into the last line of (57) produces

0 = w1

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· π1

(
x,
(
y(0),x

))
(65)

+ (n− 1) · wn
(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
+ r (x, x) (n− 1)w1

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
+ r (x, x) (n− 1) (n− 2) · wn

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
+ r (x, x) (n− 1)wn

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· π1

(
x,
(
y(0),x

))
.

Noting that with the notation used in this proof, λ (x) writes

λ (x) = −
(n− 1)wn

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
w1

(
π (x, (y(0),x)) , (π (x, (y(0),x)))

(n−1)
, π∗ (x)

) , (66)

(65) can be written

π1

(
x,
(
y(0),x

))
+ (n− 1) ·

r (x, x)− λ (x)
[

1
n−1

+ r (x, x) n−2
n−1

]
1− λ (x) r (x, x)

· πn
(
x,
(
y(0),x

))
= 0, (67)

or
[1− κ (x)] · π1

(
x,
(
y(0),x

))
+ κ (x) ·

n∑
k=1

πk
(
x,
(
y(0),x

))
= 0. (68)
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7.4 Proof of Proposition 2

Any Nash equilibrium strategy x̃ in the n-player game in which all players have utility
function vx̂ satisfies the necessary first-order condition

[1− κ (x̂)] · π1

(
x̃, x̃(n−1)

)
+ κ (x̂) ·

n∑
j=1

πj
(
x̃, x̃(n−1)

)
= 0. (69)

If there exists a unique strategy x̂ that satisfies (16), and if x̂ is uninvadable, then the unique
solution to the previous equation must be x̃ = x̂. Hence, the unique candidate for a Nash
equilibrium strategy in the n-player game in which all players have utility function vx̂, is x̂.
Suppose that x̂ indeed is such a Nash equilibrium strategy. Suppose further that vx̂ is the
resident utility function, and consider some mutant utility function g 6= vx̂, whose carriers
play some ỹ satisfying (see (11))

ỹ ∈ arg max
y∈X

n−1∑
k=0

pk (x̂) · g
(
y, ỹ(k), x̂(n−k−1)

)
. (70)

Since x̂ is uninvadable, any such strategy ỹ gives rise to a local lineage fitnessW (ỹ, x̂) which
does not exceed 1. Hence, vx̂ is uninvadable.

7.5 Proof of Proposition 3

To show that κ (x) ∈ [−1, 1], we begin by studying λ (x). Note that the terms that define
λ (x) are partial derivatives evaluated in a homogenous population. Furthermore, since
population size is constant in a homogenous population, each individual’s fitness would
remain at 1 following a marginal change in the material payoff of all the individuals in the
population. Formally:

∂w (πi,π−i, π
∗)

∂πi

∣∣∣∣
πi=πj=π∗

+
∑n

j=2

∂w (πi,π−i, π
∗)

∂πj

∣∣∣∣
πi=πj=π∗

+
∂w (πi,π−i, π

∗)

∂π∗

∣∣∣∣
πi=πj=π∗

= 0.

(71)
By permutation invariance, and using a more compact notation, this writesw1 (·)+(n− 1)wn (·)+
wn+1 (·) = 0. Using this and the assumption w1 (·) > 0,

λ (x) < 1⇔ − (n− 1)wn (·) < w1 (·) (72)

⇔ w1 (·) + wπ∗ (·) < w1 (·) ,

which is true by Assumption [M] (iii).
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Since r (x, x) ∈ [0, 1] for all x this implies that λ (x) r (x, x) < 1, and hence

κ (x) ≤ 1⇔ r (x, x)− λ (x)

[
1

n− 1
+ r (x, x)

n− 2

n− 1

]
≤ 1− λ (x) r (x, x) (73)

⇔ λ (x)

[
r (x, x)− 1

n− 1
− r (x, x)

n− 2

n− 1

]
≤ 1− r (x, x)

⇔ λ (x)

[
r (x, x)− 1

n− 1

]
≤ 1− r (x, x)

⇔ λ (x) ≥ − (n− 1)

⇔ −(n− 1)wn (·)
w1 (·) ≥ − (n− 1)

⇔ wn (·) ≤ w1 (·) ,

which is true by virtue of Assumption [M] (ii).

We now show that κ (x) ≥ −1. For any λ (x) < 1, κ (x) is increasing in r (x, x). Indeed,
the partial derivative of the expression for κ (x) with respect to r (x, x) has the same sign as
(in this expression r ≡ r (x, x) and λ ≡ λ (x))

[(n− 1) (1− λ) + λ] (n− 1) (1− λr) + λ (n− 1) [r (n− 1) (1− λ)− λ (1− r)] (74)

= (n− 1) (1− λ) (n− 1 + λ) .

For the inequality κ (x) ≥ −1 to hold, it is thus suffi cient that κ (x) ≥ −1 for r (x, x) = 0, a

condition which reduces to
−λ (x) ≥ − (n− 1) , (75)

which is true for any n ≥ 2 since λ (x) < 1.

Finally,

κ (x) ≤ r (x, x)⇔
r (x, x)− λ (x)

[
1

n−1
+ r (x, x) n−2

n−1

]
1− λ (x) r (x, x)

≤ r (x, x) (76)

⇔ r (x, x)− λ (x)

[
1

n− 1
+ r (x, x)

n− 2

n− 1

]
≤ r (x, x) [1− λ (x) r (x, x)]

⇔ λ (x) [r (x, x)]2 ≤ λ (x)

[
1

n− 1
+ r (x, x)

n− 2

n− 1

]
⇔ λ (x) r (x, x) [1− [1− r (x, x)] (n− 1)] ≤ λ (x) .

This inequality is true if and only if λ (x) ≥ 0 by virtue of the fact that for all r (x, x) ∈ [0, 1)
we have r (x, x) [1− [1− r (x, x)] (n− 1)] ≤ 1. Likewise, it is clear that κ (x) > r (x, x) if
and only if λ (x) < 0.

Finally, the last result stated in the proposition is implied by (15) together with Assump-
tion [M] (i).
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7.6 Proof of Lemma 2

Let w : Rn+1 → R be any continuously differentiable fitness function, let b ∈ R, and let b
denote the vector in Rn+1 that has all components equal to b. Then, by virtue of (71),

w1 (b) +
n∑
j=2

wj (b) + wn+1 (b) = 0, (77)

where an index k = 1, ..., n+ 1 stands for the partial derivative of w with respect to its k-th
argument.

Recalling the definition of π̄ (see (2)), for any given payoff vector (πi,π−i, π
∗) ∈ Rn+1 a

first-order Taylor expansion of w with respect to δ evaluated at δ0 writes

w (δπi, δπ−i, δπ
∗) = w (δ0πi, δ0π−i, δ0π

∗) + (δ − δ0) · w1 (δ0πi, δ0π−i, δ0π
∗) · πi (78)

+ (δ − δ0) ·
n∑
j=2

[wj (δ0πi, δ0π−i, δ0π
∗) · πj]

+ (δ − δ0) · wn+1 (δ0πi, δ0π−i, δ0π
∗) · π∗ +O(δ2).

Evaluated at δ0 = 0, this expression writes

w (δπi, δπ−i, δπ
∗) = w (0) + δ ·w1 (0) · πi + δ ·

n∑
j=2

wj (0) · πj + δ ·wn+1 (0) · π∗+O(δ2), (79)

where w (0) = 1, and 0 is the null vector inRn+1. By permutation invariance of w (πi,π−i, π
∗)

with respect to the components of π−i, we may for each j = 2, ..., n write wn (0) instead of
wj (0). Letting β = w1 (0) and γ = − (n− 1)wn (0), using (77), and rearranging terms, (79)
can thus be written

w (δπi, δπ−i, δπ
∗) = 1 + δ ·

[
β · (πi − π∗)−

γ

n− 1

∑
j 6=i

(πj − π∗)
]

+O(δ2). (80)

Letting

λ0 =
γ

β
= −(n− 1)wn (0)

w1 (0)
, (81)

and factoring out β > 0 from (80), and simply omitting to write the factor δ in the fitness
function, we conclude that for small δ > 0,

w (δπi, δπ−i, δπ
∗) = 1 + δ · β

[
πi − λ0

∑
j 6=i

πj
n− 1

− (1− λ0)π∗

]
+O(δ2). (82)

This shows that λ0 quantifies local competitiveness among patch members (Lehmann, Alger,
and Weibull, 2015; see also Frank, 1998, and Gardner and West, 2004, for a description, but
without a formal derivation, of λ0).
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The next step of the proof consists in obtaining an expression for local linage fitness
under weak selection. Under weak selection the evolutionary process is what in biology is
called neutral (Crow and Kimura, 1970, Ewens, 2004, Gillespie, 2004, and, for an explicit
example, Rousset, 2004). Formally, this means that we can write

pk(y, x̂) = p0
k +O(δ) ∀k, (83)

where O(δ) accounts for the deviation (relative to the neutral process) of the strategy-profile
distribution induced by selection (i.e., δ > 0) that is at most of order δ, where p0

k is strategy-
independent. Second, recalling the definition of w̃ (see (1)) and letting x̂ denote the resident
strategy, (82) can be written

w̃
(
y,
(
y(k), x̂

)
, x̂
)

= 1 + δβ ·
[
π̃(k) (y, x̂)− (1− λ0)π(x̂)

]
+O(δ2), (84)

where
(
y(k), x̂

)
is the (n− 1)-dimensional vector with k components equal to y and the

remaining components equal to x̂, and (see equation (22))

π̃(k) (y, x̂) = π (y|k)− λ0

[
k

n− 1
π (y|k) +

n− 1− k
n− 1

π (x̂|k)

]
. (85)

Using (83) and (84), local lineage fitness (see (3)) writes

W (y, x̂) =
n−1∑
k=0

pk(y, x̂) · w̃
(
y,
(
y(k), x̂

))
(86)

= 1 + δβ ·
n−1∑
k=0

p0
k ·
[
π̃(k) (y, x̂)− (1− λ0)π(x̂)

]
+O(δ2).

Recalling the definition of lineage payoff-advantage Π(y, x̂) (see (21)),this can be written as

W (y, x̂) = 1 + δβ · [Π (y, x̂)− (1− λ0)π(x̂)] +O(δ2). (87)

Neglecting higher order terms in δ in this equation, the condition for uninvadability [W (y, x̂) ≤
W (x̂, x̂) for all y ∈ X] under weak selection is equivalent to the condition Π(y, x̂) ≤ Π(x̂, x̂)
for all y ∈ X.
Finally, we determine the implications of Assumption [M] for the bounds on λ0 =

− (n− 1) · wn (0) /w1 (0), focusing on the non-trivial case wn (0) 6= 0. Part (ii) of the
assumption implies − (n− 1) ≤ λ0. Moreover, recalling (77) we obtain λ0 ≤ 1, with strict
inequality when either wn+1 (0) < 0 or wn+1 (0) = 0 and n > 2.

7.7 Proof of Proposition 4

To establish the first claim, let v ∈ Θ and consider any (x̂, ŷ) ∈ B0
NE (u0, v). Then, u0(x̂, x̂) ≥

u0(ŷ, x̂). By definition of u0, this inequality is equivalent to Π(x̂, x̂) ≥ Π(ŷ, x̂). Hence, u0 is
uninvadable under weak selection. For the second claim, let u 6= u0. Assume further that
v = u0. By hypothesis in the claim, there exists some (x̂, ŷ) ∈ B0

NE (u, u0) for which x̂ /∈
X (u0). Hence, there exists y ∈ X such that u0

(
y, x̂(n−1)

)
> u0

(
x̂, x̂(n−1)

)
, or, equivalently,

Π(y, x̂) > Π(x̂, x̂).
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7.8 Calculating the coeffi cients of local competitiveness and pair-
wise relatedness

7.8.1 The base-line evolutionary scenario (Section 3.2)

To calculate λ (x) we begin by calculating the partial derivatives needed for this purpose.
From the individual fitness function (17), we have

∂w (πi,π−i, π
∗)

∂πj
= − n (1−m)2 f (πi) [∂f (πj) /∂πj][

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
]2 (88)

and

∂w (πi,π−i, π
∗)

∂πi
=

n (1−m) [∂f (πi) /∂πi]

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
(89)

− n (1−m)2 f (πi) [∂f (πj) /∂πj][
(1−m)

∑n
j=1 f (πj) + nmf (π∗)

]2

+
m [∂f (πi) /∂πi]

f (π∗)

Since

λ (x) = −
(∑

j 6=i

∂w (πi,π−i, π
∗)

∂πj

)
/

(
∂w (πi,π−i, π

∗)

∂πi

)∣∣∣∣∣
πi=πj=π∗

, (90)

and writing f ′ (π∗) for ∂f(πj)

∂πj

∣∣∣
πj=π∗

, we obtain (upon simplification)

∂w (πi,π−i, π
∗)

∂πj

∣∣∣∣
πi=πj=π∗

= −(1−m)2 f ′ (π∗)

nf (π∗)
(91)

and
∂w (πi,π−i, π

∗)

∂πi

∣∣∣∣
πi=πj=π∗

=
f ′ (π∗)

nf (π∗)

[
n− (1−m)2] . (92)

Upon simplification, we thus obtain

λ (x) =
(n− 1) (1−m)2

n− (1−m)2 . (93)

To calculate r (x, x), one uses a recursion equation (this is a standard technique for
calculating probabilities of identity by descent; see Nagylaki, 1992, and Rousset, 2004, for a
background). In the scenario at hand, this equation writes

r (x, x) = (1−m)2

[
1

n
+
n− 1

n
r (x, x)

]
. (94)
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The left-hand side is the average probability that, in a monomorphic population in which
all individuals play x, the neighbor of a randomly drawn member of a certain local lineage
is also a member of this local lineage. The terms on the right-hand side details the events
in which this happens. The term on the right hand side corresponds to the event in which
neither the individual at hand nor the randomly drawn neighbor migrated in from another
island. In this case, there is a probability 1/n that they have the same parent, in which case
they are both members of the same local lineage with certainty; with the complementary
probability, they have different parents, in which case the probability that they are both
members of the same local lineage equals r (x, x). Solving (94) for r (x, x) yields

r (x, x) =
(1−m)2

n− (n− 1) (1−m)2 . (95)

7.8.2 Survival (Section 4.1)

To calculate λ (x) we begin by calculating the partial derivatives needed for this purpose.
Here, from the individual fitness function (32):

∂w (πi,π−i, π
∗)

∂πj
= −∂s (πj)

∂πj
· (1−m) f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
(96)

−
(
n−

n∑
j=1

s (πj)

)
· (1−m)2 f (πi) [∂f (πj) /∂πj][

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
]2

and
∂w (πi,π−i, π

∗)

∂πi
=
∂s (πi)

∂πi
− ∂s (πi)

∂πi
· (1−m) f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
(97)

+

(
n−

n∑
j=1

s (πj)

)
· (1−m) [∂f (πi) /∂πi]

(1−m)
∑n

j=1 f (πj) + nmf (π∗)

−
(
n−

n∑
j=1

s (πj)

)
· (1−m)2 f (πi) [∂f (πj) /∂πj][

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
]2

+ [1− s (π∗)] · m [∂f (πi) /∂πi]

f (π∗)

Writing s′ (π∗) for ∂s(πj)

∂πj

∣∣∣
πj=π∗

and f ′ (π∗) for ∂f(πj)

∂πj

∣∣∣
πj=π∗

, we obtain (upon simplification)

∂w (πi,π−i, π
∗)

∂πj

∣∣∣∣
πi=πj=π∗

= −s′ (π∗) · 1−m
n
− [1− s (π∗)] · (1−m)2 f ′ (π∗)

nf (π∗)
(98)

and

∂w (πi,π−i, π
∗)

∂πi

∣∣∣∣
πi=πj=π∗

=
1

n
(n+m− 1) s′ (π∗) + [1− s (π∗)]

f ′ (π∗)

nf (π∗)

[
n− (1−m)2] .

(99)
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Upon simplification, we thus obtain

λ (x) =
(n− 1) (1−m)

{
(1−m) [1− s (π∗)] f

′(π∗)
f(π∗) + s′ (π∗)

}
[
n− (1−m)2] [1− s (π∗)] f

′(π∗)
f(π∗) + (n+m− 1) s′ (π∗)

. (100)

The expression in (34) obtains by setting s′ (π∗) = 0.

In this scenario the recursion equation used to calculate r (x, x) writes

r (x, x) = [s (π∗)]2 r (x, x) + 2s (π∗) [1− s (π∗)] (1−m)

[
1

n
+
n− 1

n
r (x, x)

]
(101)

+ [1− s (π∗)]2 (1−m)2

[
1

n
+
n− 1

n
r (x, x)

]
.

The left-hand side is the average probability that, in a monomorphic population in which
all individuals play x, the neighbor of a randomly drawn member of a certain local lineage
is also a member of this local lineage. The terms on the right-hand side details the events
in which this happens. The first term on the right hand side corresponds to the event that
both the individual at hand and the randomly drawn neighbor survived from the previous
period. The second term on the right hand side corresponds to the two events in which
either the individual at hand or the randomly drawn neighbor survived from the previous
period while the other didn’t, and the one who didn’t survive from the previous period did
not migrate in from another island. In this case, there is a probability 1/n that one is the
offspring of the other, in which case they are both members of the same local lineage with
certainty; with the complementary probability, they are not parent and child, in which case
the probability that they are both members of the same local lineage equals r (x, x). The
third term on the right hand side corresponds to the event in which neither the individual
at hand nor the randomly drawn neighbor survived from the previous period, and neither
of them migrated in from another island. In this case, there is a probability 1/n that they
have the same parent, in which case they are both members of the same local lineage with
certainty; with the complementary probability, they have different parents, in which case
the probability that they are both members of the same local lineage equals r (x, x). Solving
(101) for r (x, x) yields

r (x, x) =
(1−m)2 + (1−m2) s (π∗)

n− (n− 1) (1−m)2 + [1 + (n− 1)m2] s (π∗)
. (102)

The expression in (33) obtains by replacing s (π∗) by s0.
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7.8.3 Wars (Section 4.2)

In the biological scenario with wars, we obtain from the individual fitness function (36):

∂w (πi,π−i, π
∗)

∂πj
= 2ρ [∂g (π, π∗) /∂πj] ·

[
m · f (πi)

f (π∗)
+ (103)

(1−m)n · f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)

]

− [(1− ρ) + 2ρg (π, π∗)] · (1−m)n · (1−m) f (πi) [∂f (πj) /∂πj][
(1−m)

∑n
j=1 f (πj) + nmf (π∗)

]2

and

∂w (πi,π−i, π
∗)

∂πi
= 2ρ [∂g (π, π∗) /∂πi] ·

[
m · f (πi)

f (π∗)
+ (104)

(1−m)n · f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)

]
+ [(1− ρ) + 2ρg (π, π∗)] · (1−m)n·

·

[
(1−m)

∑n
j=1 f (πj) + nmf (π∗)

]
∂f (πi) /∂πi − (1−m) f (πi) [∂f (πj) /∂πj][

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
]2

+m
∂f (πi) /∂πi
f (π∗)

. (105)

By permutation invariance of g, write gn (π∗, π∗) for ∂g(π,π∗)
∂πj

∣∣∣
πj=π∗

for all j = 1, ..., n. Since,

moreover, g (π, π∗) = 1/2, upon simplification we obtain:

∂w (πi,π−i, π
∗)

∂πj

∣∣∣∣
πi=πj=π∗

= 2ρgn (π∗, π∗)− (1−m)2 f ′ (π∗)

nf (π∗)
(106)

and
∂w (πi,π−i, π

∗)

∂πi

∣∣∣∣
πi=πj=π∗

= 2ρgn (π∗, π∗)− (1−m)2 f ′ (π∗)

nf (π∗)
+
f ′ (π∗)

f (π∗)
, (107)

so that

λ (x) = −
(n− 1)

[
2ρgn (π∗, π∗)− (1−m)2f ′(π∗)

nf(π∗)

]
2ρgn (π∗, π∗) + [n− (1−m)2] f

′(π∗)
nf(π∗)

. (108)

The recursion equation to calculate r (x, x) writes

r (x, x) = (1−m)2

[
1

n
+
n− 1

n
r (x, x)

]
. (109)
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In this scenario, the only event in which a randomly drawn individual can belong to the
same local lineage as a randomly drawn neighbor, is when both stayed in their natal island.
In this case, there is a probability 1/n that they have the same parent, in which case they
belong to the same local lineage with certainty; with the complementary probability, they
have different parents, in which case the probability that they belong to the same local
lineage is r (x, x). Solving for r (x, x) yields

r (x, x) =
(1−m)2

n− (n− 1) (1−m)2 . (110)

7.8.4 Wars under weak selection (Section 4.2)

Recall that under weak selection we write the individual fitness of individual i asw (π̄i, π̄−i, π̄
∗),

where (π̄i, π̄−i, π̄
∗) = (δ · πi, δ · π−i, δ · π∗), and δ ≥ 0 represents the intensity of selection

(see (2)). From (81) in the proof of Lemma 1, we have

λ0 = −

∑
j 6=i

∂w (π̄i, π̄−i, π̄
∗) /∂π̄j|δ=0

∂w (π̄i, π̄−i, π̄∗) /∂π̄i|δ=0

. (111)

Since, for δ = 0, π̄i = π̄j = π̄∗, we obtain from (106) and (107) that

∂w (π̄i, π̄−i, π̄
∗)

∂π̄j

∣∣∣∣
δ=0

= 2ρgn (π̄∗, π̄∗)− (1−m)2 f ′ (π̄∗)

nf (π̄∗)
(112)

and
∂w (π̄i, π̄−i, π̄

∗)

∂π̄i

∣∣∣∣
δ=0

= 2ρgn (π̄∗, π̄∗)− (1−m)2 f ′ (π̄∗)

nf (π̄∗)
+
f ′ (π̄∗)

f (π̄∗)
. (113)

With the expressions for f and g given in (39) and (40), and the assumption that V (π̄i, π̄−i) =

δ
(
πi +

∑
j 6=i πj

)
(note that we assume that the intensity of selection is the same for fecundity

and for the probability of winning wars; one can also allow for different selection intensities),
we have:

f ′ (π̄∗)

f (π̄∗)
= 1 (114)

and
gn (π̄∗, π̄∗) =

1

4
. (115)

Hence, we get

λ0 = −
(n− 1)

[
ρ/2− (1−m)2

n

]
ρ/2− (1−m)2

n
+ 1

, (116)

which upon simplification gives the expression in (41). It can then be verified that, together
with the fact that r0 is given by (110), this gives the expression for κ0 in (42).
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7.8.5 Culture (Section 4.3)

In the cultural scenario, we have from (44):

∂w (πi,π−i, π
∗)

∂πj
= −∂s (πj)

∂πj
· (1−m) f (πi)∑n

j=1 f (πj)
(117)

−
(
n−

n∑
j=1

s (πj)

)
· (1−m) f (πi) [∂f (πj) /∂πj][∑n

j=1 f (πj)
]2

and

∂w (πi,π−i, π
∗)

∂πi
=
∂s (πi)

∂πi
− ∂s (πi)

∂πi
· (1−m) f (πi)∑n

j=1 f (πj)
(118)

+ (1−m)

(
n−

n∑
j=1

s (πj)

)
·

[∂f (πi) /∂πi]
[∑

j 6=i f (πj)
]

[∑n
j=1 f (πj)

]2

+ [1− s (π∗)] · m [∂f (πi) /∂πi]

f (π∗)
.

Upon simplification, we obtain:

∂w (πi,π−i, π
∗)

∂πj

∣∣∣∣
πi=πj=π∗

= −(1−m)

n

[
s′ (π∗) + [1− s (π∗)] · f

′ (π∗)

f (π∗)

]
(119)

and

∂w (πi,π−i, π
∗)

∂πi

∣∣∣∣
πi=πj=π∗

=

(
n− 1 +m

n

)[
s′ (π∗) + [1− s (π∗)] · f

′ (π∗)

f (π∗)

]
. (120)

Hence:

λ (x) =
(n− 1) (1−m)

n− 1 +m
. (121)

For r (x, x) the recursion equation writes

r (x, x) = [s (π∗)]2 r (x, x) + 2 (1−m) s (π∗) [1− s (π∗)]

[
1

n
+
n− 1

n
r (x, x)

]
(122)

+ (1−m)2 [1− s (π∗)]2 ·
[

1

n
+
n− 1

n
r (x, x)

]
.

The first term on the right-hand side corresponds to the event that both the individual at
hand and the randomly drawn neighbor have been loyal to their parents, where the neighbor’s
parent belongs to the individual’s lineage with probability r (x, x). The second term on the
right hand side corresponds to the event that either the individual at hand was loyal to its
parent but the randomly drawn neighbor was not loyal to its parent, or the other way around.
In this case, there is a probability 1/n that the non-loyal child acquired its trait from the

45



loyal child’s parent, in which case they both belong to the same local lineage with certainty,
while with the complementary probability this did not happen, in which case the probability
that the randomly neighbor belongs to the same local lineage is r (x, x). The third term
on the right hand side corresponds to the event that neither the individual at hand nor
the randomly drawn neighbor were loyal to their parents but both of them acquired their
trait from someone in the island. In this case, there is a probability 1/n that they acquired
their type from the same adult, in which case they belong to the same local lineage with
certainty; with the complementary probability they have different cultural parents, in which
case the probability that the randomly drawn neighbor belongs to the same local lineage as
the individual at hand is r (x, x). We note that the equation simplifies to

r (x, x) = [s (π∗)]2 r (x, x) + 2s (π∗) [1− s (π∗)] (1−m)

[
1

n
+
n− 1

n
r (x, x)

]
(123)

+ [1− s (π∗)]2 (1−m)2

[
1

n
+
n− 1

n
r (x, x)

]
.

The expression in the text obtains upon observing that this equation is identical to the one
in (101).
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